

10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

GLASS PERFORMANCE DAYS 2025

Atmospheric Plasma Pre-Treatment of Ultra-Thin Flexible Glass for Transparent Organic Coatings

<u>Keywords:</u> Plasma treatment Cleaning and activation

Flexible glass

Organic conductive coatings

SLAVOMÍR SIHELNÍK / CEPLANT, MASARYK UNIVERSITY

Motivation: Ultra-thin flexible glass

SCHOTT

Areas larger than float glass

Light emitting devices, displays

Flexible photovoltaics

Sensors, guide-wave photonics

State-of-the-art: Water film on glass surface

- Glass surface is naturally covered with adsorbed airborne contaminants
- Water and carbohydrates form a film with thickness of a few nanometers
 - Bottom part of thin water film is chemically bonded to glass network

•

٠

٠

State-of-the-art: Cleaning and activation

Solvent-based cleaning protocol

- · Applying liquids and mechanical contact
- Duration of several tens of minutes
- Requirement of various liquids and drying •

Air plasma treatment

- Generated in surrounding air
- Free of mechanical contact
- Easy to operate and control

Motivation:

Organic transparent conducting electrode

- OLED, OSC, MEA, supercapacitors
- **Electrochemical sensors**
- Electrophysiology

Conditioning of UTFG substrates

- Wet \rightarrow detergent, acetone, IPA
- $Dry \rightarrow ambient air plasma$

Methodology: Apllied DBDs – cold plasma in ambient air

Methodology: R2R DCSBD plasma system

- · Flexible materials
- . Curved plasma units
- . Unlimited thickness
- Rotary cylinders → impact on plasma

Methodology: R2R VDBD plasma system

- Only thin flexible materials
- Rotary cylinder
 - \rightarrow counter
 - electrode
 - HV stripe
 - electrodes \rightarrow
 - around cylinder

Gap distance has impact on plasma \rightarrow macroscopically homogeneous < 2 mm

Methodology: Coating methods – PEDOT:PPS + IPA + EG

Spin coating

Spray coating

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Methodology: Analytical methods

Cleaning and activation of UTFG

- · Water contact angle
- · Surface free energy
- · Atomic force microscopy
- . X-ray photoelectron spectrometry **PEDOT:PSS-based coating**
- Four point probe
- · Profilometry
- . SEM imaging

Surface properties

Wetting, uniformity, ageing recovery

Physical and chemical interaction

Morphology and roughness

Chemical composition

Layer properties

Sheet resistance

Thickness

Uniformity

Conductivity

Results: Water contact angle – hydrophilisation

Only 0.27-s exposure to R2R DCSBD plasma induced 92 % reduction in WCA to $6.3^{\circ} \pm 0.8^{\circ}$, which is similar to the 45 mins SCP incorporating surfactants

Results: Water contact angle – hydrophobic recovery

Plasma treatment	8 h		7 days		30 days	
0.27 s R2R DCSBD	15.4° ± 1.1°	+ 145 %	26° ± 2°	+ 313 %	39.9° ± 0.6°	+ 552 %

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Results: Surface free energy – hydrophobic recovery

Total SFE:

Uncleaned reference: 35.1 mJ/m²

DCSBD plasma 0.5 s: 74.4 mJ/m²

Components of SFE:

Disperse – London-Waals interactions

- physical surface modification
- Polar polar interactions (H-bond, dipole)
 - functional groups (- OH, COOH)
 - chemical surface functionalisation

Results: AFM – surface morphology and roughness

Uncleaned reference

3 s R2R DCSBD

Sq = 0.39 nm

Sq = 0.38 nm

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Results: XPS – survey spectra

JR

Results: XPS & WCA – 1 s exposure to plasma _{C/O}

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Results: XPS – C1s bonds – standard cleaning protocol

SCP reduced carbohydrates and introduced oxycarbon bonds, while WCA dropped by 92 %

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Results: **XPS – C1s bonds – 1 s exposure to plasma**

R2R DCSBD showed a similar distribution of C1s components as the most stable SCP

Results: Spin-coated layers – sheet resistance

The lowest sheet resistances were measured on layers treated 1 s with DCSBD plasma

Results: Spray-coated layers – conductivity

Only 0.27-s exposure of UTFG to R2R DCSBD air plasma allowed to produce coatings with similar electrical parameters to 45-min SCP using ultrasound and 3 liquids

Results: Spray-coated layers – SEM

Uniformity of PEDOT:PSS layers plays key role in their electrical performance Prolonging exposure time to plasma prior to coating indicates improvment of uniformity $0.5 \text{ s R2R DCSBD} \rightarrow \text{EC} = 105 \pm 13 \text{ S/cm}$

•

Results: Spray-coated layers

Boundary of plasma-treated area

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Summary: Conclusions

R2R DCSBD plasma approved as an effective and gentle tool for cleaning and activation of UTFG without deterioration of its smooth surface

R2R VDBD plasma induced increasing of oxygen-based functional groups in differrent way than treatment with R2R DCSBD or solvent cleaning protocol incorporating surfactants

The short exposure time (~ 0.5 s) to R2R DCSBD plasma is optimal for pretreatment of UTFG prior to deposition of thin (~ 50-150 nm) uniform PEDOT:PSS-based layers, which is perspective for replacing solvent cleaning in the fabrication of flexible optoelectronics on glass

•

٠