

10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

GLASS PERFORMANCE DAYS 2025

STRUCTURAL
GLASSANALYSISOF
EVALAMINATED
OUT-OF-PLANE
OUT-OF-PLANE
CORRELATION
NUMERICALANALYTICAL,
EXPERIMENTALOF
CORRELATION
NUMERICALAND
RESULTS

Milica Baric-Slipcevic, University of the Bundeswehr Mirela Galic, University of Split Geralt Siebert, University of the Bundeswehr

INTRODUCTION

- Comparison of analytical results with numerical and experimental results
- The aim is to reduce the reliance on extensive and costly experimental testing
- For laminated glass, bending stress and deflection can be determined analytically by using the "effective thickness" method

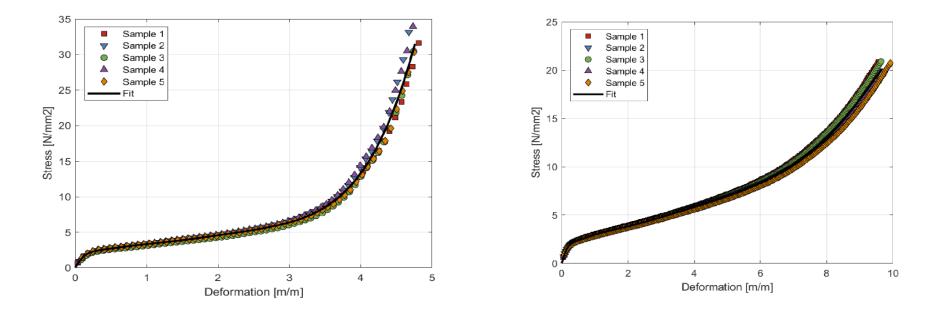
#GPD2025

- CEN EN 16612 (2019)
- CEN/TS 19100-2 (2021)
- Enhanced Effective Thickness method (Galuppi and Royer-Carfagni 2012)
- Wölfel-Bennison approach (Calderone et al. 2009)

METHODOLOGY

- Structural analyses of laminated glass with EVA interlayer
- Comparison of analytical, numerical and experimental results for the simple statically determined model in the intact state
- Behaviour of laminated glass with EVA interlayer at the room temperature, under out-of-plane loading, prior to breakage of glass ply

#GPD2025


NUMERICAL MODEL

- Ansys model
- thickness of glass plies is h = 4/6/10mm
- 0.76/0.89/1.52 mm thick EVA interlayer.
- the span and width of the element is 1000 mm x 360 mm

Non-linear Mooney-Rivlin 9-parameter model using a defined mathematical function

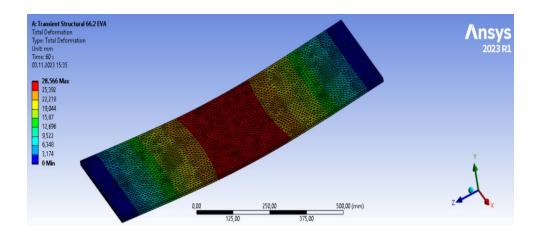
The first part of stress-strain functions is defined with Young's modulus $E_1 = 16.8MPa$ and $E_2 = 12MPa$ and the non-linear part

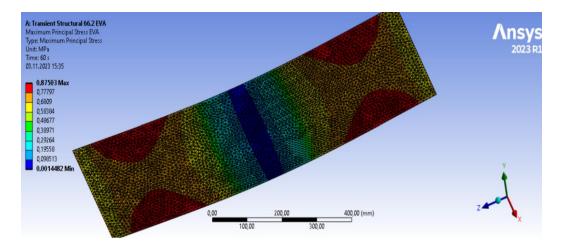
EVA 1 and EVA 2 experimental data and model fit

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Basic mechanical properties of glass according to CEN EN 16612 (2019)

Properties	Middle value	Interval		
Glass density	ho = 2500 kg/m ³	2250 – 2750 kg/m³		
Young's modulus	E = 70 000 MPa	63 000 – 77 000 MPa		
Poisson number	μ = 0.23	0.20 – 0.25		


Characteristic bending strength of each type of glass according to CEN EN 16612 (2019)


#GPD2025

Annealed glass/Float	Heat-strengthened glass	Thermally toughened		
glass	(HSG)	glass (TTG)		
45 N/mm²	70 N/mm²	120 N/mm ²		

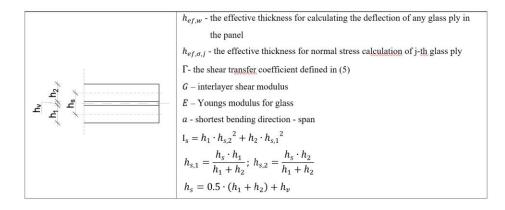
Contact between glass and interlayer is defined as a full bond.

Deformation for VSG ESG 66.2 (0.76 mm) intact state with EVA for the load of 5 kN

EVA stress response for the load of 5 kN $\,$

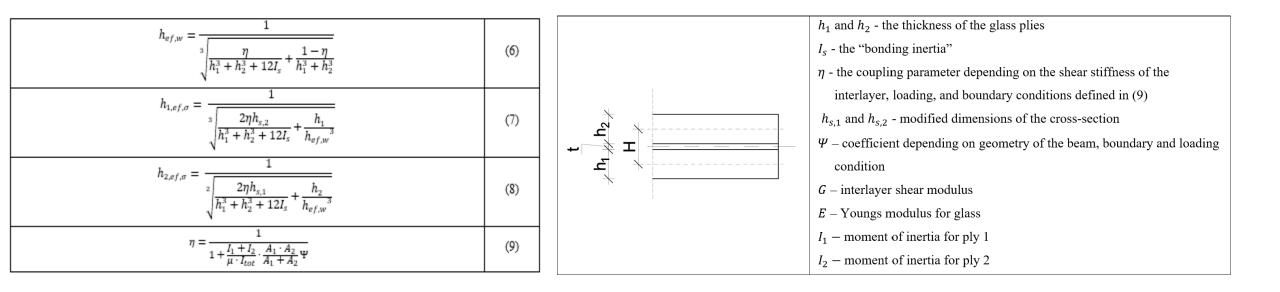
GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

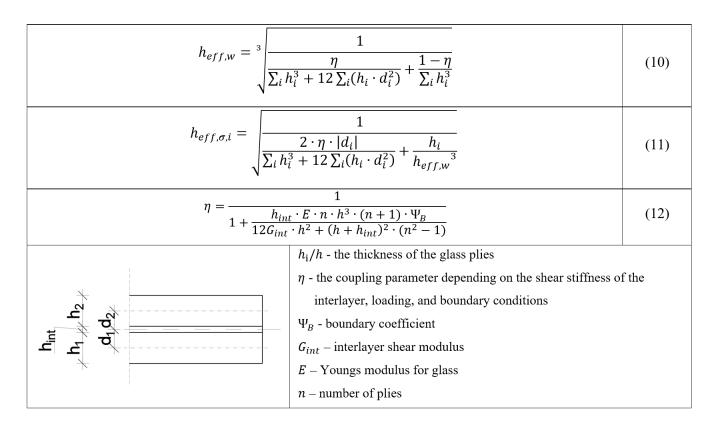
CEN EN 16612 (2019)


$h_{ef,w} = \sqrt[3]{\sum_{k} h_k^3 + 12\omega\left(\sum_{k} h_k h_{m,k}^2\right)}$			
	$h_{ef,\sigma,j} = \sqrt{\frac{h_{ef,w}^3}{h_j + 2\omega h_{m,j}}}$	(2)	
h h h h h h h h h h h h h h h h h h h	ω - the shear transfer coefficient depending on the type of interlayer the and the loading case $h_{ef,w}$ - the effective thickness for calculating the deflection of any glack the panel $h_{ef,\sigma,j}$ - the effective thickness for normal stress calculation of j-th glack h_k and h_j - the thicknesses of the individual glass plies $h_{m,k}$ and $h_{m,j}$ - the distances of the mid-pane of the k-th or j-th glass plies the mid-pane of the laminated glass	ass ply in ass ply	

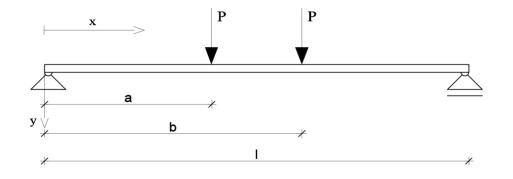
#GPD2025

Wölfel-Bennison approach


$h_{ef,w} = \sqrt[3]{h_1^3 + h_2^3 + 12 \cdot \Gamma \cdot I_s}$	(3)
$h_{ef,\sigma,1} = \sqrt{\frac{h_{ef,w}^3}{h_1 + 2 \cdot \Gamma \cdot h_{s,2}}}$	(4)
$\Gamma = \frac{1}{1 + \beta \cdot \frac{E \cdot I_s \cdot h_v}{G \cdot h_s^2 \cdot a^2}}$	(5)


GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Enhanced Effective Thickness method by Galuppi and Royer-Carfagni (2012)


CEN/TS 19100-2 (2021)

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

CEN/TS 19100-2 (2021)

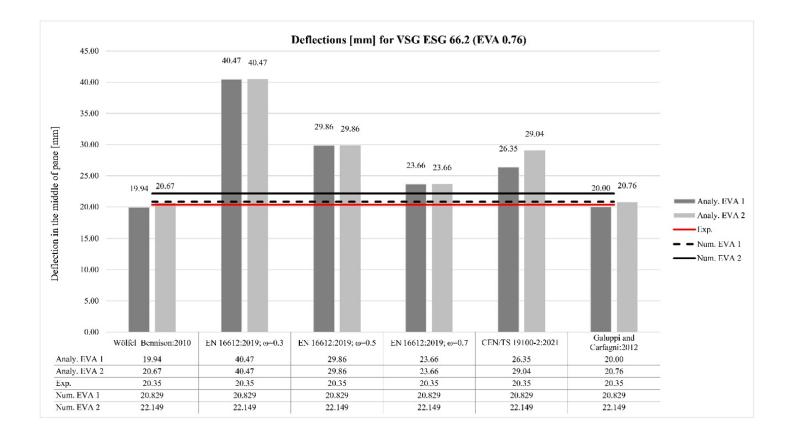
$$\sigma = \frac{M}{W_{ef,\sigma,j}} = \frac{M}{\frac{b * h_{ef,\sigma,j}^2}{6}} \qquad \qquad w_{l/2} = \frac{1}{E \cdot I_{ef}} \cdot \left[\frac{P}{6} \cdot \left(-\left(\frac{l}{2}\right)^3 + \left(\frac{l}{2} - a\right)^3\right)\right] + \left[\frac{P}{12} \cdot \left((l)^3 - (l - a)^3 - (l - b)^3\right)\right]$$

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

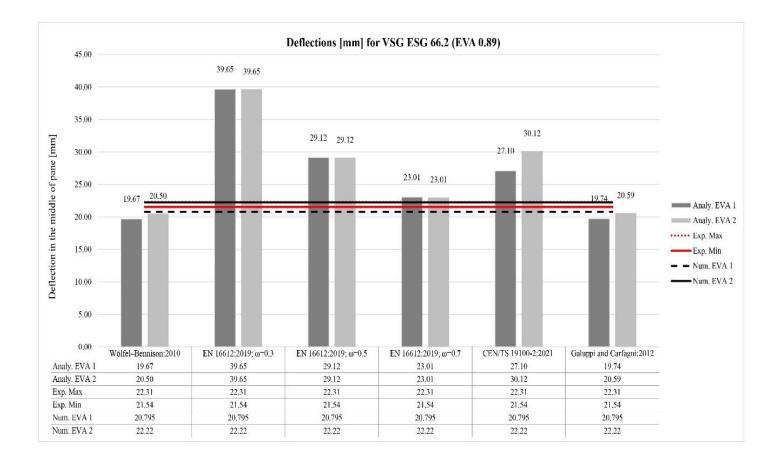
Predictability assessment

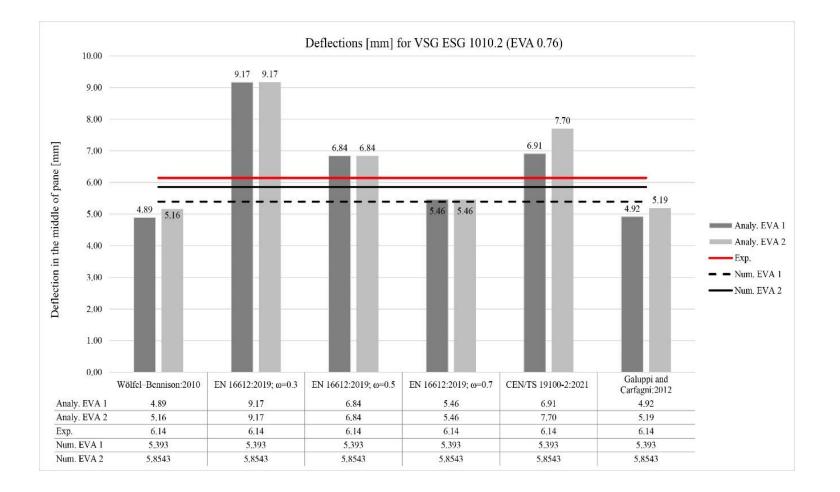
Label	Number of glass plies	Thickness of glass plies	Type of glass	Type of interlayer	Thickness of interlayer	Test temperature	Experiments
VSG ESG 66.2 (EVA 0.76)	2	6 mm + 6 mm	Tempered	EVA	0.76	+23 °C	Pankhardt and Balázs (2010)
VSG ESG 66.2 (EVA 0.89)	2	6 mm + 6 mm	Tempered	EVA	0.89	+22 °C	Serafinavičius et al. (2013)
VSG ESG 1010.2 (EVA 0.76)	2	10 mm + 10 mm	Tempered	EVA	0.76	+20 to 23 °C	Hána et al. (2018)
VSG FG 44.4 (EVA 1.52)	2	4 mm + 4 mm	Float glass	EVA	1.52	Room t.	Castori and Speranzini (2017)

#GPD2025

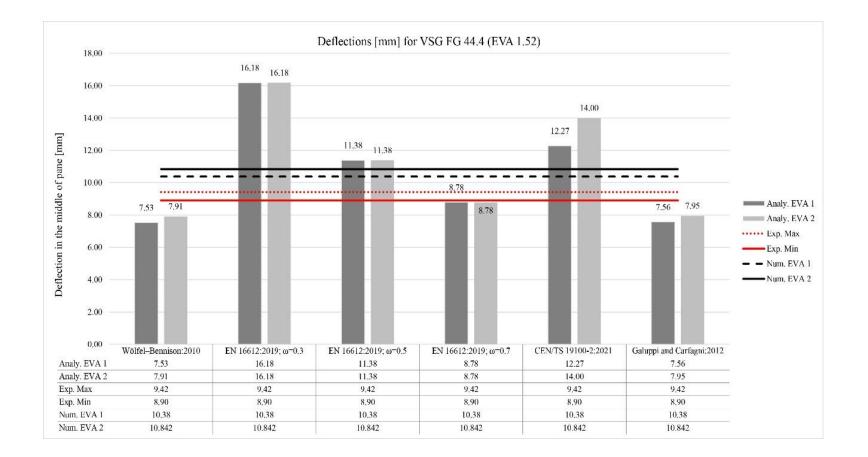

Method Value	Wölfel– Bennison	$EN16612:2019$ $\omega = 0.3$	$EN16612:2019$ $\omega = 0.5$	$EN16612:2019$ $\omega = 0.7$	Galuppi and Royer-Carfagni (2012)	CEN/TS 19100-2:2021				
	VSG ESG 66.2 (EVA 0.76)									
$h_{ef,w}$ [mm]	12.339	9.745	10.785	11.656	12.327	11.244				
nef,w [mm]	12.192	9.745	10.785	11.656	12.175	10.886				
$h_{ef,\sigma,j}$ [mm]	12.541	10.737	11.565	12.147	12.535	11.884				
ref,σ,j [mini]	12.461	10.737	11.565	12.147	12.452	11.638				
	VSG ESG 66.2 (EVA 0.89)									
$h_{ef,w}$ [mm]	12.395	9.812	10.876	11.765	12.381	11.139				
nef,w [mm]	12.226	9.812	10.876	11.765	12.207	10.754				
$h_{ef,\sigma,j}$ [mm]	12.631	10.822	11.671	12.266	12.624	11.857				
<i>nef</i> ,σ,j [iiiii]	12.537	10.822	11.671	12.266	12.527	11.582				
	·	V	SG ESG 1010.2 (I	EVA 0.76)						
$h_{ef,w}$ [mm]	19.708	15.984	17.623	19.003	19.678	17.569				
n _{ef,w} [mm]	19.366	15.984	17.623	19.003	19.329	16.942				
$h_{ef,\sigma,i}$ [mm]	20.200	17.571	18.865	19.875	20.184	18.826				
$\mathcal{R}_{ef},\sigma_{ij}$ [mm]	20.003	17.571	18.865	19.875	19.981	18.354				
VSG FG 44.4 (EVA 1.52)										
$h_{ef,w}$ [mm]	9.070	7.030	7.903	8.617	9.058	7.708				
	8.922	7.030	7.903	8.617	8.906	7.376				
$h_{ef,\sigma,j}$ [mm]	9.279	7.837	8.545	9.021	9.272	8.40				
"ef,σ,j ["""]	9.198	7.837	8.545	9.021	9.189	8.136				

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND


			-							
Method	Wölfel-	EN16612 :2019	EN16612: 2019	EN16612: 2019	Galuppi and	CEN/TS 19100-	Experiments	Num.		
	Bennison				Royer-Carfagni		Experiments	results		
Value	Demison	ω=0.3	$\omega = 0.5$	$\omega = 0.7$	(2012)	2:2021				
	VSG ESG 66.2 (EVA 0.76) 2P=4.0 kN									
Defl.	19.94	40.47	29.86	23.66	20.00	26.35	20.35	20.829		
[mm]	20.67	40.47	29.86	23.66	20.76	29.04	20.55	22.149		
Stress	84.77	115.65	99.69	90.36	84.86	94.41	/	94.21		
[MPa]	85.87	115.65	99.69	90.36	86.00	98.45		96.648		
VSG ESG 66.2 (EVA 0.89) 2P=4.0 kN										
Defl.	19.67	39.65	29.12	23.01	19.74	27.10	21.536 -	20.795		
[mm]	20.50	39.65	29.12	23.01	20.59	30.12	22.305	22.22		
Stress	83.57	113.86	97.89	88.62	83.67	94.83	/	93.709		
[MPa]	84.83	113.86	97.89	88.62	84.97	99.40		96.331		
			VSG ESC	6 1010.2 (EVA	A 0.76) 2P=4.0 kN					
Defl.	4.89	9.17	6.84	5.46	4.92	6.91	6.144	5.393		
[mm]	5.16	9.17	6.84	5.46	5.19	7.70	0.144	5.8543		
Stress	32.68	43.19	37.47	34.06	32.73	37.62	35.181	37.188		
[MPa]	33.32	43.19	37.47	34.06	33.40	39.58	55.101	38.451		
	VSG FG 44.4 (EVA 1.52) 2P=0.6kN									
Defl.	7.53	16.18	11.38	8.78	7.56	12.27	8.90 - 9.42	10.38		
[mm]	7.91	16.18	11.38	8.78	7.95	14.00	0.90 9.42	10.842		
Stress	23.23	32.56	27.39	24.58	23.26	28.34	/	28.921		
[MPa]	23.64	32.56	27.39	24.58	23.69	30.21		29.523		



GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND



GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Summary and conclusion

The methods proposed by Galuppi and Royer-Carfagni (2012) and the Wölfel-Bennison approach showed the best agreement with experimental data.

The results obtained using the EN 16612-2019 standard for different values of the shear transfer coefficient ω did not show consistent accuracy.

The approach based on CEN/TS 19100-2 (2021) yielded stable and conservative predictions, especially for stress, making it a suitable option for practical design applications where safety is a priority.

In terms of predictive behaviour, it generally aligns with EN 16612-2019 for $\omega = 0.5$.

The FEM model developed in ANSYS effectively captured both stress and deformation behaviour, showing good agreement with experimental trends and validating the model assumptions and material characterization.

#GPD2025

Thank you for Your attention!

Project "BeTraSi VSG - Berechnung der Tragsicherheit von gebrochenen EVA-VSG aus ESG" (funding number SWD-10.08.18.7-21.45) is funded by research supporting programm ZUKUNFT BAU of Bundesministerium des Inneren, für Bau und Heimat (Federal Ministry for interior, for building and home).

Bundesministerium des Innern, für Bau und Heimat

