

New Technology for a precise and repeatable Measurement of Distortion after the Furnace

Viprotron GmbH Ostendstrasse 17 64319 Pfungstadt Germany

+49 6157 98638 – 12 info@viprotron.de www.viprotron.de

Strategic Vision for each glass fabricator

Produce Permanent perfect tempered glass quality!

Independent of qualified furnace operator!

Performance Days 2025

Introduction & Motivation

- Customer expectations rise for flawless tempered glass
- High-end projects require distortion-free glass
- Existing furnace processes still produce visible distortions
- Furnace optimization is complex without reliable measurement

and experienced operator

New solutions must deliver precise and repeatable measurements!

The key for advanced furnace optimization!

Key Takeaways

- What makes True Edge[™] Distortion Technology unique
- Measurement results right from a fabricator
- Benefits for glass processors and architects
- What's next: optimization, automation, and beyond

Understand how to take a significant

step towards your vision!

protron

we inspect your glass.

- Provides a High-resolution mapping of distortion
 - from leading to trailing edge
- Patented Edge-to-Edge scanning removes blind spots near glass edges
 - provides real edge kink results
- Identifies all kind of distortion, edge kink, roller waves, pockets, saddles, ...

Key for advanced furnace optimization, reliable laminating and architectural glass standards!

Measurement principle – What Makes True Edge[™] Measurement So Precise?

First - line scan cameras

- Second triangle patterns
- Black <u>AND</u> White triangles

Glass Scon Line Performance Days 2025

True Edge™ Distortion Technology rotron we inspect your glass. Measurement principle – What Makes True Edge[™] Measurement So Precise? Line scan camera captures the glass in reflection Glass reflects the projected Triangle pattern back Scan line)

Measurement principle – What Makes True Edge[™] Measurement So Precise?

- Spacing is analyzed between both Black <u>AND</u> White triangles

Measurement principle – What Makes True Edge[™] Measurement So Precise?

- Measuring tempered glass with Distortion
- Varying spacing of black/white lines can be calculated into Millidiopter

Glass Performance Days 2025

Precision Testing in certified Lab

- 6mm 1m X 1m glass
- Glass Completely measured tactile in a Lab
- On granite table in air-conditioned Lab room

Highest precision you can get!

Glass Performance Days 2025

Lab Repeatability Testing (30x)

Repeatability check: 30 measurements vs. Tactile measurement

High conformity of the scanner results compared to tactile measurement

Distortion	Standard	Confidence			
[mD]	deviation	Interval 90%			
Leading	3	5			
Center	2	3			
Trailing	2	3			

Precision of measurement by comparison

Repeatability check: 30 measurements vs. Tactile measurement

Distortion [mD]	Tactile/3D	Viprotron True Edge		
Leading	306	303		
Center	61	64		
Trailing	171	177		

Peak-to- Valley [mm]	Tactile/3D	Viprotron True Edge			
Leading	0.36	0.32			
Center	0.11	0.10			
Trailing	0.20	0.20			

Glass

Near-Perfect Match: Center and Edge Distortion

vi protron we inspect your glass.

Conveyor Repeatable Test (Preformed by Vandaglas Eckelt)

- 6mm Float 360mm x 1000mm
- Test on left / middle / right side
- 10 times each side

Conveyor Repeatable Test (Preformed by Vandaglas Eckelt)

Evaluation of reproductibility for Peak to Valley

Samples: PLC 6mm

1 glass float 6mm toughened 360mmx1100mm

Procedure:

the toughened sample will be measured 10 times (without tempering) in 3 different locations of the scanner (left, centre and right side)

	left side			centre side			right side			
	Front edge	Trailing edge	Roller wave	Front edge	Trailing edge	Roller wave	Front edge	Trailing edge	Roller wave	
Measurement Nb. 1 [mm]	0,12	0,12	0,06	0,13	0,12	0,04	0,14	0,12	0,06	
Measurement Nb. 2 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06	
Measurement Nb. 3 [mm]	0,13	0,12	0,07	0,13	0,12		0,14	0,12	0,06	
Measurement Nb. 4 [mm]	0,13	0,12	0,07	0,13		iation	0,14	0,12	0,06	
Measurement Nb. 5 [mm]	0,13	0,12	0,07	0.13	um dev	0,04	0,14	0,12	0,06	
Measurement Nb. 6 [mm]	0,13	0,12	0,07	Max 30	H	0,04	0,14	0,12	0,06	
Measurement Nb. 7 [mm]	0,13	0,12	ioni	Man	0,12	0,04	0,14	0,12	0,06	
Measurement Nb. 8 [mm]	0,13	Con	clusio	0,13	0,12	0,04	0,14	0,12	0,06	
Measurement Nb. 9 [mm]	0,13	0, 001.	0,07	0,13	0,12	0,04	0,14	0,12	0,06	
Measurement Nb. 10 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06	
			7							
Min value [mm]	0,12	0,12	0,06	0,13	0,12	0,04	0,14	0,12	0,06	
Max value [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06	
Max minus Min value [mm]	0,01	0	0,01	0	0	0	0	0	0	

Conveyor Repeatable Test (Preformed by Vandaglas Eckelt)

- Manual verification confirms all measurements
- Variance: < ±25 μm across all</p>

Measured a	according EN12	150-1[mm]		
Leading	Center	Trailing		
0.18	0.05	0.10		

1 glass float 6mm toughened 360mmx1100mm

Evaluation of reproductibility for Peak to Valley

Samples: PLC 6mm

A benchmark result,

which could never achieved before!

Performar Days 2

rocedure:	the toughened	i sample will be	measured 10 t	imes (without t	empering) in 3	different local	tions of the sca	nner (ieft, cent	re and right s
	left side			centre side			right side		
	Front edge	Trailing edge	Roller wave	Front edge	Trailing edge	Roller wave	Front edge	Trailing edge	Roller wave
leasurement Nb. 1 [mm]	0,12	0,12	0,06	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 2 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 3 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 4 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 5 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 6 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 7 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 8 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 9 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
leasurement Nb. 10 [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
lin value [mm]	0,12	0,12	0,06	0,13	0,12	0,04	0,14	0,12	0,06
lax value [mm]	0,13	0,12	0,07	0,13	0,12	0,04	0,14	0,12	0,06
lax minus Min value [mm]	0,01	0	0,01	0	0	0	0	0	0

viprotron **True Edge™ Distortion Technology** we inspect your glass. **True Edge™ – Engineered to Go All the Way to the Edge** High resolution - measure glass distortion every 0.5 mm High distortion resolution - ± 4 mDiopt Measurement starts right at the glass edge – No blind zones Glass 50 150 250 350 450 550 650 750 850 950 1,050 1,150 1,250 1,350 1,650 1,750 1,850 1,950 Performance 2.050 Davs 2025

True Edge™ – Engineered to Go All the Way to the Edge

- Records both mDiopt values and Peak-Valley in mm
- Identifies all kind of distortion,
 - edge kink, roller waves, pockets, saddles, ...
- Unique and modern technology Modular and Upgradeable

Glass

Key for furnace optimization

and future advanced automation!

vi protron we inspect your glass.

Technology That Delivers – Benefits Across the Entire Value Chain

- Architects: Enhanced transparency confidence in visual outcome
 - 100% trust no manual control necessary Stable and Predictable lamination
- Quality managers:

Reliable validation tool Consistent and traceable On-Line documentation

Simplified QA documentation

Sales Manager:

Glass Processors:

General:

Reduction of costly post-delivery, complaints and returns

alaston

SCHOLL GLAS

protron

Outlook: Towards Furnace Optimization and Automation

- Reliable Data Smarter Furnaces
 - Data the Key to Furnace Optimization and Automation
- Current:
 - Manual furnace optimization is possible
 - Together with a qualified operator
- Future:
 - Automatic furnace control via data integration
 - Continuous improvement through machine learning feedback loops
 - Full process automation independent of skilled operator

Conclusion

- True Edge[™] Distortion:
 - New benchmark for distortion measurement
 - With Full transparency and repeatability
- Drives quality, efficiency and customer satisfaction
- Ready for dynamic manual furnace control

Glass

Ready for future full furnace automation

Let's turn your company vision

into quality excellence and

intelligent processes!

New Technology for a precise and repeatable Measurement of Distortion after the Furnace

Viprotron GmbH ACC Ostendstrasse 17 64319 Pfungstadt Germany AS 2025

+49 6157 98638 – 12 info@viprotron.de www.viprotron.de