

Glass Performance Days 2025, Tampere, Finland

Sustainable melting and processing of Soda-lime-silica glasses

Department of

Glass and Glass-Ceramic

Institute of Mineral Engineering | RWTH Aachen University

Examples for improving the sustainability of glass melting and processing

I. Intelligent glass-optimization: High-quality automated art-glass

Glass

Performance

Soda-Lime-Silica composition for automated high-quality art-glass forming

The main specification were

5

- CTE and thermal shock resistance improved. Target for CTE: 8 ppm·K⁻¹ < CTE < 9 ppm·K⁻¹ but mainly relevant is withstanding of at least ΔT 60 K acc. to ASTM F2179 test.
- Mechanical resistance improved, both scratching and edge chipping.
- Dish washer resistance improved (class 2).
- Sb₂O₃ removed completely and BaO reduced + ideally no B₂O₃ (avoidance of condensates).
- All automated (centrifuge and pressing) and hand-crafted products can be manufactured from the same mass glass.

Soda-Lime-Silica composition for automated high-quality art-glass forming

Procedure

- Thorough process and status-quo evaluation at customer.
- Very close communication and exchange with customer, especially at process side / with the "hands-on" people.
- Thorough evaluation of the competitor land-scape.

Algorithm to calculate possible glass compositions

- Where possible and especially where models (linear-incremental or non-linear incremental) yield reliable results, the respective parameters have been included in an optimization algorithm.
- Additional BFT trials to screen compositions.

 After feedback loops, compositions narrowed down to two options.

Large scale melting trials for "final" verification

Proof of lab- and BFT trials in terms of melting-in and turn-over.

T_{Furnace} = 1400 °C

Time [h]

2

1250 0

Glass-Cerar

Electrical conductivity evaluation.

Calculation energy of the batch-to-melt conversion

$$\Delta H_{\rm T,liq} = H_{\rm T,liq} - H_{glass}^{\circ}$$

$$H_{\rm T,liq} = H_{1400^{\circ}\rm C,liq} + c_{\rm P,liq} \cdot (T - 1400^{\circ}\rm C)$$

$$egin{aligned} H_{1400^\circ ext{C,liq}} &= \sum_k n_k \cdot H_{1400^\circ ext{C,liq,k}} \ c_{ ext{P,liq}} &= \sum_k n_k \cdot c_{ ext{P,liq,k}} \end{aligned}$$

$$\Delta H_{chem}^{\circ} = H_{glass}^{\circ} + H_{gas}^{\circ} - H_{batch}^{\circ}$$

$$H_{glass}^{\circ} = \sum_{k} n_{k} (H_{k}^{\circ} + H_{k}^{vit})$$

$$H_{gas}^{\circ} = \sum_{k} n_{g} \cdot H_{g}^{\circ}$$

$$H_{batch}^{\circ} = \sum_{b} n_{b} \cdot H_{b}^{\circ}$$

$$H_{ex}^{\circ} = (1 - y_{c}) \cdot \Delta H_{chem}^{\circ} + \Delta H_{T,liq}$$

		Reference	Option 1	Option 2
H ^o batch	kWh/t	4037.9	4417.8	4368.8
H ^o _{glass}	kWh/t	3557.7	3841.0	3841.0
H ^o gas	kWh/t	300.6	426.6	392.5
H ^o _{chem}	kWh/t	179.5	150.2	135.3
ΔH _{gas,25-600°C}	kWh/t	23.4	30.3	27.5
H _{1400°C,liq}	kWh/t	430.1	434.8	434.8
C _{P,liq}	kWh/(t·K)	0.361	0.382	0.382
T ₃ , Gob cut	°C	1137	1221	1221
ΔH _{T3,liq}	kWh/t	335.3	366.4	366.4
H _{ex}	kWh/t	514.8	516.6	501.7

- In terms of chemical reaction enthalpy slight differences between the glasses in favor of option 2.
- The kinetics of the conversion (BFT trials) of option 2 however was slightly worse than option 1.
- These aspects should, in terms of melting performance, balance each other.

Hydrolytic resistance

Thermo-shock resistance

- 1. CLAIM: CTE and thermal shock resistance improved.
 - > New glass CTE 9.2 ppm·K⁻¹ (better than all competitors, including reference).
- 2. CLAIM: Mechanical resistance improved, both scratching and edge chipping.
 - > Flexural strength is at a similar level for all glasses. However, edge chipping is connected to hydrolytical stability.
- 3. CLAIM: Dish washer resistance improved (class2)
 - > The new glass was the only tested glass in class 2. All others tested in class 3.
- **4. CLAIM:** Sb₂O₃ removed completely and BaO reduced.
 - > The new glass does not contain Sb_2O_3 , BaO or B_2O_3 .
- 5. CLAIM: Centrifuge and pressing products can be manufactured from the same mass glass.
 - Trials showed that the glass can be used for centrifuge and pressing with similar forming parameter.

Examples for improving the sustainability of glass melting and processing

II. Innovative glass-development: CO_2 - and Soda-free glasses Glass

Performance

Soda-free glasses

Simple math:				
20 - 30 % of the total CO_2				
comes from the batch				
itself, depending on cullet				
(e.g. 27 % at 60 % cullet).				

Options for Carbonatefree batches

- \rightarrow Cullet ratio?
- → calcinated rawmaterials?
- → Get rid of Soda!

	E-glass based composition without soda / sodium coming from other raw materials								
		REF	Ха	Хс	Ya1	Х	Xb	Y2	Ya2
)_		IST							
2	SiO2	73,27	60,7	60,06	58,94	61,15	58,88	60,50	61,08
et	Al2O3	1,56	14,17	15,02	14,17	13,34	16,53	12,81	11,61
:).	CaO	9,12	17,45	17,43	17,73	20,75	17,53	22,44	17,94
	MgO	2,58	1,27	1,27	2,68	1,43	1,22	2,93	2,52
e-	Na2O	11,97	5,17	5,01	5,21	2,09	5,09	0,09	5,51
	K2O	0,93	0,48	0,43	0,49	0,48	0,14	0,48	0,51
	Fe2O3	0,2	0,25	0,23	0,26	0,29	0,23	0,24	0,29
	TiO2	0,05	0,34	0,33	0,35	0,35	0,17	0,33	0,38
	SO3	0,27	70	0,09	0,11	0,06	0,07	0,05	0,08
	B2O3	0	0	2,00*	о	0	2,00*	0	0
EP 22 179 847.3 C. Roos, R. Conradt, F. Güclü									

Meltability of Soda-free glasses - viscosity

CO₂ and Soda-free glasses

Efficiency of combustion an relation to flame temperature

Chambadal–Novikov efficiency:

 $\eta_{\infty} = 1 - \sqrt{\frac{T_0}{T_{ad}}}$

Leads to a combustion efficiency (NTP, if applicable: non-stoec.) of

	T _{ad} / K	Efficiency
CH ₄ -Air	2.233	0.65
Heavy Oil-Air	2.375	0.66
NH ₃ -O ₂	2.380	0.66
CH ₄ -O ₂	2.599	0.68
H ₂ -O ₂	2.792	0.69
	Dort	forn

- In reality the process is never adiabatic.
- In the high temperature of the flame there may be product dissociation and other reactions in addition to the main combustion reaction.
 - Therefore, the highest temperature does not necessarily mean stoichiometric combustion.
- Usually λ slightly < 1, yielding better ignition and flame stability due to higher flame speed.
- For comparison: 1 eV e⁻ equals roughly 11.600 K

18

Some simple math....

		Calorific value		Calorific value			"CO2-Efficiency" (primary)
		lower	upper	lower	upper	CO2-release	CO2 per 1 kJ "Hex"
Data taken from: VDI-Wärmeatlas Perry's Chemical Engineers' Handbook Ullmann's Encyclopedia of Industrial Chemistry		[MJ/kg]	[MJ/kg]	[kJ/mol]	[kJ/mol]	[kg/kg]	[g/kJ (Hu)]
	H2	120,00	141,86	241,92	285,99	0,00	0,00
	CH4	50,00	55,50	802,15	890,39	2,74	54,86
	C2H6	47,50	51,90	1.428,33	1.560,63	2,93	61,62
	C3H8	46,30	50,40	2.041,69	2.222,49	2,99	64,67
	C4H10	45,60	49,50	2.650,45	2.877,14	3,03	66,42
	C2H4	47,20	51,30	1.324,15	1.439,17	3,14	66,47
	C3H6	45,80	48,90	1.927,31	2.057,76	3,14	68,50
	C2H2	48,20	50,20	1.255,03	1.307,11	3,38	70,13
	СНЗОН	19,60	22,70	628,02	727,35	1,37	70,08
	C2H5OH	26,80	29,70	1.234,65	1.368,25	1,91	71,29
	NH3	18,60	22,50	316,77	383,19	0,00	0,00
	со	10,10	0,00	282,90	0,00	1,57	155,56
	H2S	15,00	18,60	511,14	633,81	0,00	0,00
	Zr T C	19,00	0,00	1.733,26	0,00	0,00	0,00
	C4N2	59,94	0,00	4.558,88	0,00	2,31	38,61

Sustainable melting and processing of Soda-lime-silica glasses Prof. Dr. Christian Roos Institute of Mineral Engineering | RWTH Aachen University

19

Thank you very much for your attention

Examples for improving the sustainability of glass melting and processing

III. Sustainability in forming-process: Avoidance of glass-contact lubricants Performance

WHAT ON EARTH AM I DOING IN HERE ON THIS BEAUTIFUL DAY??' THIS IS THE ONLY LIFE I'VE GOT!!

Bill Watterson

Describe a highly

- non-Arrhenius
- non-isothermal
- non-static
- non-isochemical
- non-Newtonian (?)
- non-ideal surface situation...

Sustainable melting and processing of Soda-lime-silica glasses Prof. Dr. Christian Roos Institute of Mineral Engineering | RWTH Aachen University

23

- Optimize system for non-isothermal conditions
- Evaluate multiple materials (materialscombinations)
- Calculate adhesion forces based on Van-der-Waals approach (adhesion force depends on London and Debye forces)

