

GLASS PERFORMANCE DAYS 2025

THE LIFE CYCLE EMBODIED ENERGY OF A VACUUM INSULATED GLASS

Quantifying the Life Cycle Insulated Glass: An Embodied Energy Perspective

10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

ASIYATH IBRAHIM/UNIVERSITY OF SYDNEY

WHY THE TOPIC MATTERS?

- Building sector accounts for 30% of the global energy use. ۲
- 6 GtCO₂ indirect emissions mostly electricity from \bullet heating and cooling.

		_
	2010	2021
Buildings 50%	9 637	12 594
Industry	7 450	10 166
Transport	295	441
Hydrogen production	-	2
Global electricity demand	18 548	24 700

2010 2020 2030 2050 2040

WHY THE TOPIC MATTERS?

Windows = Major energy loss contributor

- Up to 60% of heat loss from buildings
- Poor insulation, especially in OECD countries
- Cooling demand is growing fastest (IEA 2022)

Energy efficiency vs. embodied emissions

- Efficient designs = lower ops energy, but higher embodied emissions
- Need full Life Cycle Analysis (LCA) to evaluate trade-offs
- VIG = promising technology but what's the real impact?

Feature	IGU	VIG
Insulation Method 🍥	Gas-filled gap (Air, Argon, Krypton)	Vacuum gap (~0.2 mm)
Thermal Conductance 🍾	1.8–3.0 W/m²·K	As low as 0.35 W/m²·K
Glass Thickness 🦠	~24–36 mm (double/triple pane)	~6.2 mm (2 × 3 mm panes + vacuum gap)
Spacer Type 送	Hollow spacer (aluminum/steel/plastic) on perimeter of glass	Micro-scale pillars, as an array on glass surface, to resist atmospheric pressure
Edge Sealing 🔗	Butyl/Silicone room temp. sealants as a gas barrier	Solder glass frit, formed at high-temp for a hermetic seal
Low-E Coating 🏮 🔆	Single coating on interior pane	Single coating on interior pane
Manufacturing Energy 🕸 🔋	Moderate (mainly glass processing + soft sealing)	High (due to edge seal cure, vacuum sealing, precision component work)

GB

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Basic concept of LCA: Adapted from source: (Chau, Leung, & Ng, 2015)

MIETHODOLOGY - LUFE CYCLE ASSESSMIENT (LCA)

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND Adaptation of LCA framework based on ISO 14040

	Process-based LCA
🔍 Data Type	Detailed process & material data
Normal Sector Se	High (specific)
System Coverage	Incomplete (truncation error)
Limitation	Misses upstream supply chain steps
Strength	High accuracy for specific processes

Input-Output (IO) LCA

Economic sector-based data

Low (aggregated)

Complete (entire economy included)

Not product-specific

Captures full supply chain impacts

Fig. 1. Life-cycle assessment method for the advanced glazing system. Source: (Citherlet et al., 2000)

TOTAL EXPENDITURE / INPUT (X')

Combines strengths of both methods \checkmark

WHIT HITBRID LCAS

X Uses detailed process data where available

Supplements with IO data to capture entire supply œ

chain

- 44 Minimizes truncation and aggregation errors
- Suitable for complex products like VIG with multi-

tiered suppliers

	Key:				
	Other regions of the MRIO table Different categories		У	Final demand matrix, e.g. household consumption (\$)	
			Q	Satellite accounts matrix	
	х	Total output		Blank spaces - No data	
	z	Total input		Sale of algae bio-crude to different industries	
	Т	Intermediate transactions matrix (\$)		Inputs needed for the production of algae bio-crude	
15)	v	Primary inputs matrix, e.g. wages and salaries (\$)		Total amount of bio-crude produced by the algae biofuel industry	

Source: (Malik et al., 20

PHASE 1 - GOAL & SCOPE

🎯 Goal	Quantify embodied energy and GHG emissions in the supply chain of VIG and IGU	 Process Anal Historical cal 	
🔭 Scope	Assess environmental impacts related to energy & emissions	 Literature IGU manufact manufact 	
觽 System Boundary	Economy wide	 Production in Outcome: VIG:29 expendit 	
📐 Functional Unit	1 m² of VIG/IGU	• IGU:18 expendit	

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

ysis (PA)

- data &
- alculations
- e review on VIG &
- turing
- of cost parity and
- puts

ure categories ure categories

S Input-Output (IO) Data **MRIO table (2019)** – U.S.

economy, from GLORIA database

- **II** Structure:
- 164 Regions
- 120 IO Sectors
- 6 Final Demand Categories
- 6 Value Added Categories
- Includes energy satellite account

PHASE 3 - IMIPACT ASSESSMENT

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

INTERPRETATIONS 0 PRIMER 4

GB

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

PHASE 4 - INTERPRETATION: GHG by Sectors for VIG & IGU

VIG – GHG Emissions

'Other ceramics' = 46% 20 (main contributor – manufacturing inputs)

Electricity = 34.2% (linked to U.S. grid; ~40% natural gas)

Gas supply = 14.6% (upstream impacts; not directly purchased)

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

IGU - GHG Emissions

Uther manufacturing = 75.1% (mainly float glass production)

Electricity = 12.3% P

Gas supply = 14.6% (upstream impacts; not directly purchased)

PHASE 4 - INTERPRETATION: Energy by Sectors for VIG & IGU

VIG – Embodied Energy

 \bigwedge Gas extraction & coal = highest energy use (due to fracking, processing)

Electricity = 3rd highest (used in vacuum sealing & equipment)

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

IGU – Embodied Energy

Manufacturing steps 8 fewer lower energy \rightarrow overall

🔀 Less upstream energy use than VIG

PHASE 4 - INTERPRETATION:

GLASS PERFORMANCE DAYS 2025 10 - 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

Savings vary based on energy tariffs

Lifespan: 25–30 years

Total Energy Saved: 15,174–29,876 MJ/m² (over 25 years

Energy savings equivalence: Enough energy to power a fridge for 10–20 Yrs (Avg fridge uses ~1,500 MJ/year)

Total Emissions Avoided: 910–1,793 kg CO₂e/m² (over 25 years)

Same as planting 45–89 trees per m² (Based on 1 tree absorbing ~20 kg CO₂ per year over 25 years)

VIG offers a long-term environmental return that grows with time!

CO₂e savings equivalence:

Why this study?

- Buildings account for ~40% of global energy use. Glazing is a key contributor.
- VIG represents one of several pathways toward energy-efficient, low-carbon buildings

What we found?

- Embodied energy payback: 5–8 months (cold climates)
- GHG savings: Up to 1.8 tonnes CO_2e/m^2 over 25 years
 - Operational energy savings: Up to 29,876 MJ/m²

CONCLUSION

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

• Hybrid Life Cycle Assessment (hLCA): combining detailed process data with global IO tables for accuracy.

Why it matters?

- VIG may cost more upfront but delivers lasting environmental and economic returns.
- Ideal for net-zero and cold-climate buildings.

THANKIOU

GLASS PERFORMANCE DAYS 2025 10 – 12 JUNE 2025 | NOKIA ARENA - TAMPERE, FINLAND

