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Abstract 

A main challenge in laminated glass design is determining the degree of shear coupling between the 
glass piles through the interlayer, which leads to behavior somewhere between the monolithic limit 
(perfect coupling) and the layered limit (free-sliding glass layers). The warping of cross-sections caused 
by significant transverse shear strains in soft interlayers makes traditional laminated plate theories 
based on the plane-section assumption unreliable. Many commercial software packages exist to assist 
with this, but they often have limitations, particularly with geometric nonlinearities. Some of these 
programs only incorporate second-order theories, which are insufficient for thoroughly analyzing 
curved structures. Here, we introduce an in-house developed FEM code, which employs a nonlinear 
theory based on solid-shell models to overcome these limitations. Our code applies the quasi-elastic 
approximation, where polymers are linear-elastic materials with a secant shear modulus depending on 
temperature and time. The geometrically exact solid-shell finite element approach allows us to use one 
single element per layer (glass or polymer) in the thickness direction but can also accommodate the 
multiple sheets in multi-material interlayers, used to impart hybrid characteristics to the laminate. Visual 
programming tools can import any curved geometry into the model, which approximates elements 
using displacement nodal values on the top and bottom surfaces of each layer with inherent regularity. 
An alternative solid-shell model with fewer parameters is derived by enforcing equal finite rotation of 
the rigid layers at each surface point through a local rotation-free re-parametrization of nodal 
displacements and by imposing plane stress conditions. This approach, which facilitates coupling with 
a solid discretization for modelling connections, is based on a straightforward strain measure quadratic 
in the displacement unknowns, suitable for handling finite strains. Comprehensive numerical examples 
for LG plates and curved shells with large deflections are included to illustrate the code potentiality. 
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1. Introduction 

Laminated glass is composed of alternating layers of stiff materials (glass plies) and soft materials 
(interlayers). The significant disparity in their mechanical properties causes uneven warping of the 
cross-sections under bending. As a result, homogenized models, such as first-order or higher-order 
shear theories for laminated plates, fail to accurately predict structural behavior in terms of deflection, 
stress distribution and buckling. Specifically, the glass layers act as plates or shells, exhibiting both 
membrane and flexural stiffness, while the thin, soft interlayer connects them through its shear 
stiffness. This interaction enhances the overall bending capacity of the laminate, which lies (Norville et 
al., 1998) between the lower bound of freely sliding glass plies (layered limit) and the upper bound of 
fully bonded glass plies (monolithic limit). Consequently, cross-sectional warping is most irregular at 
the layered limit and virtually nonexistent (no warping) at the monolithic limit. Accurately modeling the 
actual degree of shear coupling between glass plies via the interlayer is one of the most extensively 
researched topics in glass engineering. 

Various approximate engineering methods have been used, most of which introduce the concept of 
effective thickness—defined as the thickness of a monolith that exhibits equivalent bending properties 
in terms of stress and deflection. One such method is the Enhanced Effective Thickness (EET) 
approach (Galuppi & Royer Carfagni, 2012), which is also referenced in the updated version of the 
Eurocode for structural glass (Feldmann et al, 2023). This method is based on a variational approach 
that assumes that the deformation shape mirrors that of a monolithic plate. However, these methods 
are grounded in linear elasticity theory, making it difficult to account for geometric nonlinear effects. 
Additionally, their accuracy diminishes when applied to highly asymmetric laminated plates or under 
pseudo-concentrated loads. 

Laminated glass is most frequently analyzed using specialized software. One of the most widely utilized 
tools in design practice is undoubtedly SJ Mepla. The theoretical foundation for its implementation 
(Bohmann, 2018) prescribes to discretize each stiff layer into Mindlin–Reissner finite elements, with 
independent rotations and in-plane displacements. The transverse displacement is assumed to be 
uniform across all layers, while the kinematics of the soft layers are derived from the variables of the 
stiff layers, assuming perfect bonding and negligible thickness strain. However, the software has 
certain limitations: it is restricted to flat geometries; the model is only second-order accurate and not 
exact for large deformations; the nonlinear solver is load-controlled, making it unsuitable for general 
instability problems. 

Here, we introduce a novel approach developed within a Finite Element Method (FEM) framework, 
based on the theory of solid shells for plates as initially proposed by Liang and Izzuddin (2015). This 
model represents an advanced Mindlin–Reissner formulation that integrates independent in-plane 
displacements of the soft layers, with the equal rotation of the stiff layers treated as a direct variable. 
The study also introduces a locking-free shell finite element, and the geometrically nonlinear model is 
formulated using the co-rotational approach, which is particularly effective for small strain scenarios 
(Felippa and Haugen, 2005). Further developments, especially in the modeling of creep behavior in 
viscoelastic interlayers, are thoroughly discussed in Liang et al (2016), but rheological aspects will be 
addressed only in a future version of the code. 

This model offers a simple and practical way to analyze laminated glass, as well as other laminated 
structures characterized by an alternating sequence of stiff and soft layers. It overcomes the limitations 
of small-displacement analysis and the Kirchhoff assumption, which neglects transverse shear strains 
in the stiff (glass) layers. The displacement field is represented using standard polynomial shape 
functions, as the weak formulation does not require C1 continuity—a condition typically achieved only 
through specialized finite element techniques or isogeometric analysis (Leonetti et al, 2019). The code 
offers a comprehensive nonlinear geometric description of the deformation, rather than relying on a 
second-order approximation, feasible only for flat geometries, as with SJ Mepla. This capability enables 



 

the code to effortlessly handle curved geometries, which can be directly imported from visual design 
platforms such as Rhinoceros Grasshopper. 

2. The solid shell model 

The theory underlying the specialization of the solid shell model to laminated glass are more 
comprehensively explained in (Magisano et al, 2023). As indicated in Fig. 1, The undistorted reference 
configuration of the shell is described via the convective curvilinear coordinates 𝝃𝝃 = [𝜉𝜉, 𝜂𝜂, 𝜁𝜁], with (𝜉𝜉, 𝜂𝜂) 
representing the middle surface and 𝜁𝜁 ∈ [−ℎ𝑖𝑖/2, ℎi/2] the thickness coordinates for the i-th layer of 
thickness ℎ𝑖𝑖. Such geometry can be automatically imported from design platforms. The position of the 
point 𝐲𝐲(𝝃𝝃)  in the distorted configuration is given in terms of its position 𝐱𝐱(𝝃𝝃)  in the reference 
configuration and the displacement 𝐮𝐮(𝝃𝝃), as 𝐲𝐲(𝝃𝝃) =  𝐱𝐱(𝝃𝝃) + 𝐮𝐮(𝝃𝝃). 

 

Fig. 1: Representation of the middle plane of the shell in the undistorted reference configuration and in the 
deformed configuration. 

The solid shell assumption consists in a linear through-the-thickness approximation, such that the 
position vector is given by 
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in terms of the bottom and top positions of the layers, respectively 𝐱𝐱𝑏𝑏[𝜉𝜉, 𝜂𝜂] = 𝐱𝐱[𝜉𝜉, 𝜂𝜂,−ℎ𝑖𝑖/2]  and 
𝐱𝐱𝑡𝑡[𝜉𝜉, 𝜂𝜂] = 𝐱𝐱[𝜉𝜉, 𝜂𝜂, ℎ𝑖𝑖/2]. Similarly, the displacement field is approximated as 
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where 𝐮𝐮𝑏𝑏[𝜉𝜉, 𝜂𝜂] = 𝐮𝐮[𝜉𝜉, 𝜂𝜂,−ℎ𝑖𝑖/2] and 𝐮𝐮𝑡𝑡[𝜉𝜉, 𝜂𝜂] = 𝐮𝐮[𝜉𝜉, 𝜂𝜂, ℎ𝑖𝑖/2] correspond to the bottom and top surfaces. 

The Green-Lagrange strain tensor is then calculated via differential geometry. The constitutive 
equations for a neo-Hookean solid are assumed; specifically, the second Piola-Kirchhoff stress tensor 
is a linear function of the Green-Lagrange strain tensor through the fourth-order elasticity tensor.   

FEM implementation considers an element for each layer. Since the displacement field is described by 
the displacements of the bottom and top surfaces of the layer, it is straightforward to consider structures 
composed of many layers under the hypothesis that there is no slip between them. In fact, any two 
adjacent layers share a common interface, whose deformation is described by the corresponding 



 

displacement vector field. In the simplest case, trilinear shape functions can be used. This 
approximation usually provides accurate results. In the most difficult cases, higher order shape 
functions can be used or, alternatively, a layer can be decomposed in sub-layers. 

The linear element so defined is prone to transverse shear and trapezoidal locking, which can be 
eliminated by the Assumed Natural Strain (ANS) technique (Bischoff & Ramm, 1997). To avoid the 
thickness locking arising from the assumption of linear displacement through the thickness, the 
constitutive equation can be simplified using the Plane Stress Enforcement (Magisano et al, 2023).  

A simplified approach involves adopting a reduced kinematic model for the laminate, where all stiff 
layers are constrained to maintain the same orientation during deformation, meaning the normal vector 
to each layer remaining identical across all layers. This simplification, usually assumed in commercial 
codes for laminated glass, reduces the total number of variables but also imposes the condition that 
the interlayer thickness remains constant. As a result, localized thickness strains in the interlayer, which 
can occur under pseudo-concentrated loads on laminated glass, cannot be accounted for. Anyway, for 
laminated shells with a small number of layers, the computational efficiency gained from this 
constrained kinematics is generally not essential. 

3. Examples 

3.1. Laminated glass plate under pseudo-concentrated load  

We now present numerical experiments for a few paradigmatic cases. 

Consider a 3 m × 4 m laminated glass element, composed of two glass plies, 8 and 6 mm thick, 
sandwiching a 1.52 mm polymeric interlayer, under a load of 5 kN, distributed on a 100 mm × 100 mm 
area on the top of the 8 mm glass layer. The interlayer is representative of a PVB operating at room 
temperature under short-term loading, for which the shear modulus is estimated as G = 50 MPa.   

 

 

 

(a) (b) 

Fig. 2: Simply supported laminated plate, under a pseudo-concentrated force. (a) Layout and applied loads. (b) 
Maximum principal stress at the tensile surface of the intrados glass ply. 

  



 

Figure 2(a) represents the layout of the plate simply supported on the four sides, with indication of the 
loaded area. The adopted mesh, made of 32 × 42 rectangular elements, refined in proximity of the 
loaded portion, is indicated in Figure 2(b). The same figure shows the maximum principal component 
of stress, obtained on the external tensile surface at the intrados. In this numerical experiment, we do 
not use the reduced kinematic model. In fact, it is necessary to consider that the pseudo-concentrated 
nature of the load may produce the thickness straining of the interlayer, producing a curvature 
difference in the deformed shapes of the two glass plies.  

Results were successfully compared with those obtainable with a 3D mesh, employing 20 node brick 
elements, with a mesh size comparable with that of Figure 2(b), implemented in the Strand7 FE code 
(Strand7, 2010). Thanks to our lightweight ad hoc implementation, computation time is significantly 
reduced compared to software like Strand7. Our approach achieves a speedup of approximately 3× 
relative to the Hexa8 Strand7 simulations. 

3.2. Curved laminated shell 

The problem is that of a curved shell, with a radius of curvature equal to 3000 mm, simply supported on 
the two straight sides, as indicated in the layout of Figure 3(a). The laminated package consists of two 6 
mm glass ply and 1.52 mm interlayer, for which we again assume a shear modulus equal to G = 50 MPa. 
The structure is subjected to the action of a 15 kN load, applied on a 100 mm × 100 mm portion. 

 

 

 

 
 (a) (b) 

Fig. 3: Curved laminated shell, under a pseudo-concentrated load. (a) Layout and position of the applied load. 
(b) Maximum principal stress at the intrados of the bottom glass ply. 

Figure 3(b) presents the result from the FEM simulation in terms of the maximum tensile surface, attained 
at the intrados of the laminated structures. Again, we did not apply the reduced kinematic option to 
properly consider the straining of the interlayer and the consequent reduction of its thickness. 
Comparison with the results from Strand7 (Strand7, 2010), with a 3D mesh employing brick elements with 
a mesh size comparable with that of Figure 3(b), demonstrated an excellent agreement. The difference is 
the order of 0.1 % in terms of maximum displacement and 1 % in terms of maximum stress. The 
computational time was 15 s for our code, about 1 min for Strand7 hexa8 brick elements, and about 9 min 
for the simulation in Strand7 with hexa20 elements.  

  



 

3.3. Pendulum test 

This problem requires a dynamic analysis, also implemented in our code. Inertial contribution is 
included, and the problem is discretized in time and solved using the Newmark method (Newmark, 
1959).  

The pendulum test, conducted in accordance with EN 12600 (CEN TC/129, 2002), is simulated using 
the same methodology proposed by SJ Mepla (Bohmann, 2018). The impacting mass of 50 kg is 
surrounded by two tires inflated to an air pressure of 3.5-4.0 bar. The model treats the mass as a point-
like object, assuming it has an initial velocity at the impact, determined by the pendulum's dropping 
height. The elasticity of the tires is represented by a nonlinear spring that acts only in compression, 
with a stiffness defined as 𝐶𝐶𝑅𝑅 = 300 + 2⌈ΔwR⌉ [N/mm], where Δ𝑤𝑤𝑅𝑅 is the spring's elongation. Since the 
stress state in the laminate is highly influenced by the extension of the contact area between the 
deformed tire and the plate surface, the force transmitted by the spring is distributed over the tire's 
footprint. This is calculated, at each time step, by approximating each one of the tires as a toroidal 
shape and determining its intersection with a plane parallel to the torus axis, positioned at a distance 
Δ𝑤𝑤𝑅𝑅  from the tire's outer surface. 

The case study is that of a 2 m × 3 m laminated glass plate, composed of two 6 mm glass plies and 
1.52 mm interlayer, for which we assume a shear modulus G = 12 MPa. The stiffness of the interlayer 
is assumed to be very low on purpose, to test the code in the severe condition in which the interlayer 
is soft. As described in Figure 4(a), the plate is simply supported on the two short sides, and is 
subjected to the action of the impactor, described as above, with a drop height of 1 m, with center of 
impact at 1200 mm from the lower side of the plate. The same figure also indicates the shape of the 
footprint from the tires, represented by two ellipses, whose size is calculated as a function of Δ𝑤𝑤𝑅𝑅 at 
each time step, using the same approximation indicated in (Bohmann, 2018). 

The state of stress is calculated at each instant assuming that the tires exert a uniform pressure on the 
current footprint, having as resultant the (non-linear) spring reaction. The difficulty in the calculation is 
that the size of the footprint changes in time, according to the actual value of Δ𝑤𝑤𝑅𝑅. Figures 4(b), 4(c) 
and 4(d) show the maximum principal stress, on the tensile surface, at various instants after the impact: 
(b) at t = 0.0015 s, (c) at t = 0.0195 s and (d) at 0.037 s. In state (b), the mesh is refined by doubling 
the number of elements on each side, allowing for a clearer representation of the imprint shape left by 
the two tires. The state in (c) is that of maximum stress during the analysis; here, the shape of the two 
tires is not recognizable, due to the diffusion of stresses in the glass ply. The case (d) corresponds to 
a condition in which the plate is no longer in contact with the pendulum and oscillates freely. Since the 
impinging tires are modelled through a non-linear spring acting in compression only, their action 
becomes zero when the impactor bounces back and detaches from the glass plate.  

The results were compared with those obtained from SJ Mepla, demonstrating excellent agreement in 
replicating the full strain and stress history during the impact. The maximum displacement difference 
is in the order of 0.1%, while the discrepancy in maximum stress is less than 1%. Although this 
deviation can be deemed acceptable, it may be attributed to the fact that SJ Mepla employs only a 
second-order approximation for geometric non-linearities and does not account for thickness straining 
of the interlayer.  

Naturally, our code can be extended to model the impact of the normalized pendulum on curved glass 
panels of any shape and size. In such cases, it will still be essential to account for the specific shape 
of the footprint, which will arise from the intersection of the toroidal shapes—used to approximate the 
tire geometry—with the initially curved surfaces of the glass. This process can be carried out based on 
purely geometric considerations, considering the distortion Δ𝑤𝑤𝑅𝑅 of the one-way spring that represents 
the stiffness of the tires. 

 



 

 

 

  

 

(a) (b) 

 

 

 

 

(c) (d) 

Fig. 4: Rectangular laminated glass plate, simply supported on the two short sides, under impact test. (a) Static 
scheme and typical footprint of the impactor. Maximum principal stress at the lower intrados surface of the 

bottom glass ply at (b) t= 0.0015 s, (c) t= 0.0195 s and (d) 0.037 s, after the impact. Extremal values correspond 
to condition (b). 

 

  



 

4. Conclusions 

We have briefly presented an in-house developed code that applies the solid shell model specifically 
to laminated glass. Its primary strength lies in its ability to accurately capture nonlinear geometric 
effects in laminated glass behavior, including initial curvatures. Therefore, we can equally analyze 
either flat or curved laminated glass, without fundamental distinction. The code is versatile, capable of 
analyzing laminated glass of any shape, size, and composition under diverse boundary and loading 
conditions. It also accounts for the dynamic response of laminated structures; the proposed examples 
have demonstrated the impact of a standardized pendulum as per EN 12600. Additionally, the code 
incorporates the thickness straining of the interlayer material, which can be significant under pseudo-
concentrated loads that cause localized differential curvatures between the glass layers. 

The use of this code for insulated glass units, particularly focusing on the load shearing between glass 
layers via the gas-filled cavity, is thoroughly discussed in a separate article presented at the GPD 2025 
conference. In the present version of the code, the polymeric interlayer is modeled as linear elastic, 
using a secant shear modulus that aligns with the characteristic duration of the applied loads and the 
environmental temperature. A future update of this code will incorporate the complete viscoelastic 
behavior of the interlayer. 

This code powers a web application freely accessible at apps.maffeis.it. The final version features an 
intuitive interface for defining geometry, supports, loads, and combinations, while also displaying solver 
results through interactive plots and generating a comprehensive calculation report in PDF format. It 
streamlines compliance checks with EN 16612 and ASTM 1200 standards, making the designer's 
workflow significantly more efficient. 
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