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Abstract 

Multi-Material Polymeric Interlayers (MMPI) combine different polymers between two or more glass 
plies. Typically, a soft polymer sheet is used as the core layer, while two stiffer sheets encase this core. 
MMPIs are widely used in various industries, such as construction and automotive, for their ability to 
impart hybrid characteristics to laminated glass structures. For instance, an acoustic monolayer PVB 
can be used as the core layer to enhance sound insulation, while a stiff PVB is applied as the outer 
layer to increase structural stiffness. Modelling the mechanical behaviour of MMPIs is challenging due 
to their time- and temperature-dependent rheological properties. Accurately predicting the relaxation 
function of a stacked interlayer requires combining the relaxation functions of each material through a 
comprehensive viscoelastic analysis, where the current strain depends not only on the actual stress 
but also on the entire stress history. A novel approach involving fractional calculus is here used for a 
comprehensive viscoelastic characterization of MMPIs. The fractional derivatives are numerically 
approximated using the L1 formula, which allows a variable time-step in the computations. The basic 
assumption is that the relaxation functions are represented by continuously connected power-law 
branches. This is a faithful representation for the response of many commercial polymers, which 
simplifies parameter determination from experimental data and enables easier and more 
computationally efficient numerical implementation. The fractional approach offers significant 
advantages in accuracy, efficiency, and simplicity compared to the traditional method using Prony 
series of exponential functions, making it a promising method of analysis. In this study, we combine 
the single relaxation functions of the interlayers in a laminated glass package to obtain the MMPI’s, 
comparing model predictions with experimental data. We also highlight potential differences from the 
quasi-elastic approach, which models the polymers as linear-elastic materials with a temperature- and 
time-dependent secant shear modulus. 
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1. Introduction 

Laminated glass consists of a layered structure made up of two or more glass sheets bonded together 
by one or more thin, flexible thermoplastic polymer interlayers. These interlayers are considered 
"flexible" because they lack significant axial or flexural stiffness, and their function is to provide shear 
coupling between the glass layers. The most used commercial interlayers include polyvinyl butyral 
(PVB), Ionoplast SentryGlas® (SG), and Ethylene-Vinyl Acetate (EVA). These materials are available 
in various formulations, depending on the amount of plasticizers and metal salts added, as well as the 
specific processing methods used (M. Martin, 2020). The interlayer capacity of coupling the glass plies 
varies between the upper bound of full coupled glass plies (monolithic limit) and the opposite lower 
bound of free-sliding plies (layered limit). The viscoelastic materials provide a condition that varies in 
time within these two limit cases. The traditional approach to interpreting the relaxation function of a 
polymeric material involves the use of Prony series, founded on the Maxwell-Wiechert model. This is 
the most used framework for describing linear viscoelasticity (Biolzi, Cattaneo, Orlando, Piscitelli & 
Spinelli, 2020). It accounts for the fact that relaxation does not occur at a single time but over a range 
of times. The relaxation curve is represented as a sum of exponential terms, each modelled as a spring-
dashpot element, with different decay times. Additionally, a single spring represents the material's 
stiffness at infinite time, when all dashpots are fully relaxed. However, experimental studies on a broad 
range of materials, particularly on most commercial polymers used as interlayers, suggest that the 
relaxation function can be effectively approximated by segments of power laws in time (Viviani, Di 
Paola, and Royer-Carfagni, 2022). When plotted on a bi-logarithmic scale of secant shear modulus 
versus time, these power laws appear as a polyline, with each segment fully defined by two parameters: 
its slope and its intercept with a vertical axis. When the relaxation function of a viscoelastic material 
follows power laws, rheological models based on fractional calculus become highly effective. A 
fractional derivative, which is a derivative of any arbitrary order (real or complex), aligns with 
Boltzmann’s convolution integral when the relaxation function is a power law. 

Multi-Material Polymeric Interlayers (MMPI) for laminated glass are often employed when a single-foil 
interlayer fails to deliver the desired combination of properties. The primary application of MMPI is to 
improve acoustic insulation. In such applications, a soft PVB core layer, specifically optimized for 
acoustic damping, is sandwiched between standard PVB layers that are tailored for strong adhesion 
to glass, toughness, and ease of lamination processing. Naturally, the mechanical behaviour of MMPI 
differs from that of single-layer products. It is important to note that very short load durations become 
particularly relevant in practical applications at low temperatures, as this effectively shifts the 
performance curve toward longer times. It is difficult to estimate the mechanical performance of such 
MMPI because every material shows its own long-term behaviour, and, when combined, the overall 
relaxation curve is intermediate. The thickness of each layer in the composite also plays a significant 
role in the determination of the mechanical response. It is possible to estimate such relaxation curve 
through Dynamic Mechanical Thermal Analysis (DTMA), but this method is usually expensive and time 
consuming; moreover, they can be errors in the measurement of the experimental data, because the 
testing machine is sophisticated and needs proper calibration. A numerical simulation able to predict 
the relaxation curve with good accuracy, starting from the relaxation curves of the single materials, can 
help in the design of MMPI and provide guidance for optimization.  

Here, we present a numerical tool based on the power law interpolation of the relaxation curve of 
polymeric materials, which can predict the relaxation curve of an MMPI using as input data the 
relaxation curves of the single materials, usually available from the producers. Specific reference is 
made to three main products by Kuraray GmbH: Ionoplast SentryGlas®, Stiff PVB and Acoustic PVB 
at various operating temperatures (20o C, 30o C and 40o C). 

 



 

2. The model 

Interlayers composed of several individual layers of different materials can exhibit complex mechanical 
behavior under various loading conditions. This is dictated by factors such as material properties, layer 
thickness, and the arrangement of the individual layers. Understanding the mechanical behavior of 
multilayers is crucial for designing and optimizing structures that utilize these materials. We 
demonstrated a theoretical method for predicting the mechanical behavior of a multilayer in a relaxation 
test, starting from the material model parameters and layer thicknesses. This method is also 
implemented in a finite element framework, which allows us to predict the relaxation function of a 
complex MMPI starting from the experimental relaxation function of each single material determined 
via DTMA analysis.  

2.1. Description via fractional calculus 

The viscoelastic properties of interlayer materials are characterized by their relaxation function. This 
function reflects the material's long-term creep behavior and demonstrates how stiffness diminishes 
over time. For interlayers, the relaxation function is typically determined experimentally by applying a 
constant strain and observing the corresponding stress reduction, specifically the decay in the secant 
elastic modulus of the uniformly strained sample over time. Alternatively, it can be obtained through 
dynamic experiments and Time-Temperature Superposition (TTS), as outlined in the DMA approach 
also mentioned by EN 16613. In structural modelling, the relaxation function of the polymer serves as 
a critical input. Boltzmann’s superposition principle is used to describe linear viscoelastic behavior. 

In laminated glass beams and plates, the relaxation curve determines the time-dependent shear-
coupling capacity of the polymeric interlayer. 

The conventional method for interpolating the experimental points involves the use of Prony series, 
which is expressed as a summation of exponential terms of the form 𝑅𝑅𝑖𝑖𝑒𝑒−𝑡𝑡 𝜗𝜗𝑖𝑖⁄ , where 𝑅𝑅𝑖𝑖represents the 
i-th relaxation shear modulus and 𝜗𝜗𝑖𝑖 denotes the corresponding relaxation time (Gant & Bower, 1997). 
This series corresponds to the Wiechert model of viscoelasticity, composed of an array of Maxwell 
units arranged in parallel with a spring of stiffness 𝑅𝑅0. Such spring represents the residual stiffness of 
the viscoelastic material as time approaches infinity. Therefore, the relaxation function is given by 

𝑅𝑅(𝑡𝑡) = 𝑅𝑅0 + ∑ 𝑅𝑅𝑖𝑖𝑒𝑒−𝑡𝑡 𝜗𝜗𝑖𝑖⁄𝑁𝑁
𝑖𝑖=1        (1) 

The form of the relaxation function indicates that an alternative interpolation can be achieved using 
continuously connected branches of power laws, each expressed as 𝐶𝐶𝛼𝛼𝑡𝑡−𝛼𝛼 , with 0 < 𝛼𝛼 < 1 (Santi, 
Bennison, Haerth & Royer-Carfagni, 2023). In a bi-logarithmic plot, a power law appears as a straight 
line, implying that the curves in Figure 1 can be approximated by a polyline consisting of three 
segments, as illustrated for the material Acoustic PVB. Each segment is characterized by two 
parameters: the slope 𝛼𝛼 of the line and 𝐶𝐶𝛼𝛼 [𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠𝛼𝛼], which represents the stiffness value at 𝑡𝑡 = 1 𝑠𝑠. If 
the observation interval for the phenomenon is narrowed, or for materials such as Ionomers for which 
the curve can be well approximated by a single power law, fewer branches may suffice for the 
approximation (Santi & Royer-Carfagni, 2024). 



 

 

Fig. 1: Relaxation curves for a stiff PVB, tested at 20o C, approximated with branches of power laws. Three 
branches are needed to represent the relaxation curve for the entire observation time. 

There is a mathematical description of the equations of viscoelasticity founded on fractional calculus, 
because Boltzmann’s convolution integral coincides with the Caputo fractional derivative of order 𝛼𝛼 
when the relaxation function is expressed by a power law, that is  

𝐷𝐷0𝐶𝐶 𝑡𝑡
𝛼𝛼[𝑓𝑓(·)](𝑡𝑡) = 1

𝛤𝛤(1−𝛼𝛼)∫ (𝑡𝑡 − 𝑡𝑡̅)−𝛼𝛼𝑓𝑓̇(𝑡𝑡̅)𝑑𝑑𝑡𝑡̅𝑡𝑡
0                                                                                                                  (2) 

However, to establish such a precise correspondence, it is necessary to formally write the power-law 
terms by defining the coefficients in terms of Euler’s Gamma function 𝛤𝛤, which is the generalization of 
the factorial n!, to non-integer or complex values of n. 

We choose to use the power law approximation to represent the relaxation function of the polymeric 
materials, because such method presents several advantages over the classical approach for the 
purpose of this work: an easier and more intuitive representation of the curves that allows to build 
numerical faster and more reliable numerical models. 

In the viscoelastic interlayer, from Boltzmann superposition principle, one obtains the constitutive 
equation takes the form: 

 𝜏𝜏(𝑧𝑧, 𝑡𝑡) = 𝜏𝜏(𝑧𝑧, 0)𝑅𝑅(𝑡𝑡) + ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡̅
𝑅𝑅(𝑡𝑡 − 𝑡𝑡̅)𝑑𝑑𝑡𝑡̅𝑡𝑡

0      (3) 

In general, it is supposed that at 𝑡𝑡 = 0 the structure is undistorted, so that 𝜏𝜏𝑦𝑦𝑦𝑦(𝑧𝑧, 0) = 0. If the relaxation 
function is a simple power law or a piecewise function of power laws, one obtains 

𝜏𝜏(𝑧𝑧, 𝑡𝑡) = ∫
𝜕𝜕𝛾𝛾𝑦𝑦𝑦𝑦
𝜕𝜕𝑡𝑡̅

𝐶𝐶𝛼𝛼
𝛤𝛤(1−𝛼𝛼)

(𝑡𝑡 − 𝑡𝑡̅)−𝛼𝛼𝑑𝑑𝑡𝑡̅𝑡𝑡
0 = 𝐶𝐶𝛼𝛼 𝐷𝐷0𝐶𝐶 𝑡𝑡

𝛼𝛼[𝜖𝜖(𝑧𝑧,·)](𝑡𝑡)  (4) 

This is the definition of Caputo fractional derivatives, as indicated in (2). 

2.2. Shear response of multi-material interlayers 

To predict the mechanical behaviour of a MMPI on the laminated structure, it is necessary to study the 
coupling effect of the interlayer on the two glass plies it connects. The relaxation functions of the 
materials that compose the MMPI are well known, and they represent the starting point of the analysis. 
The goal is to predict a single relaxation function that describes the coupling effect of the package, that 
is, the evolution of the stiffness in time. It is possible to extrapolate that relaxation function through 



 

DTMA analysis and use it for the model validation, by comparing the numerical result and the 
experimental points. 

The proposed model consists in a laminated glass structure with a MMPI composed by two sheets of 
Acoustic PVB used as outer layers and one single sheet of stiff PVB used as core layer. In Figure 2 
we represent the relaxation-function’s power-law interpolation of the two materials, 𝑅𝑅1(𝑡𝑡) for Acoustic 
PVB (in yellow) and 𝑅𝑅2(𝑡𝑡)  for Stiff PVB (in violet), juxtaposed to the curve derived from their 
combination and their respective experimental points in red triangles. The curves are represented at 
different temperatures (20oC (a), 30oC (b), 40oC (c)), obtained by controlling the temperature of the 
machine platen used in the test.  

 

Fig. 2: Power law approximation of the relaxation function for two materials: 𝑅𝑅1(𝑡𝑡) for Acoustic PVB (yellow) and 
𝑅𝑅2(𝑡𝑡) for Stiff PVB (violet), as well as the curve derived from their combination(black), with the experimental 

points represented by red triangles. The curves correspond to different environmental temperatures: 20oC (a), 
30oC (b), 40oC (c). 

The laminated glass package is subjected to a shear stress on the top surface, while the bottom surface 
is fixed by preventing the displacement in x-direction, as shown in Figure 3. The proposed system can 
be simplified by considering a single layer of material “2” with total thickness equal by the sum of the 
thicknesses in the original configuration and respective relaxation functions 𝑅𝑅1. It is measured the 
displacement of the two materials 𝜖𝜖1 and 𝜖𝜖2 in x-direction, assuming that the total displacement of the 
upper glass layer is 𝜖𝜖 =  𝜖𝜖1 +  𝜖𝜖2. This system is compared to the equivalent system where, instead of 
considering the two  materials, the interlayer is composed by only one single material with thickness 
equal to the sum of the thicknesses of the two layers “1” and “2” in the previous scheme, i.e., ℎ𝑚𝑚 =
ℎ1 + ℎ2, and with the equivalent relaxation function 𝑅𝑅𝑚𝑚 measured from DTMA by considering the two 
materials. The total displacement of the upper glass layer should be the almost same in both systems 
𝜖𝜖 ≅ 𝜖𝜖𝑚𝑚  . Consider that there are always some uncertainties in the results, because the relaxation 
functions used as an input data are derived from experiments, subjected to a certain error in the 
measure.   

 

Fig. 3: Laminated glass sandwich package composed by MMPI. The green material “1” used in the core is 
Trosifol Extra Stiff PVB, while the orange material “1” is Acoustic PVB. The structure is subjected to shear stress 

on the top surface. 



 

Considering the power law approximation of the experimental relaxation function, it is possible to 
describe the constitutive law of the polymeric interlayer with Equation (4), where the shear stress 𝜏𝜏(𝑧𝑧, 𝑡𝑡) 
in the material is equal to the 𝛼𝛼 time derivative of the shear deformation multiplied by the stiffness 
constant 𝐶𝐶𝛼𝛼. The shear deformation is therefore  

𝜖𝜖1(𝑧𝑧, 𝑡𝑡) = 1
ℎ1

[𝑢𝑢𝐴𝐴(𝑧𝑧, 𝑡𝑡) − 𝑢𝑢𝐵𝐵(𝑧𝑧, 𝑡𝑡)]                                                                                            (5) 

referred to the interlayer “1”; the relationship for the material “2” is analogous. 

In elastic solids, stress is proportional to the zero-order derivative of strain, while in liquids, stress is 
proportional to the first derivative of strain. Therefore, it is natural to assume that for viscoelastic 
materials, stress is proportional to a real-order derivative, intermediate between 0 and 1 of the strain 
over time. This hypothesis leads to the conceptualization of a mathematical model of Spring-Pot, 
whose schematic representation is shown in Figure 4. The constitutive equation for the Spring-Pot can 
be described through Caputo’s’ fractional derivative definition in the generalized form  𝜏𝜏(𝑡𝑡) =
𝐶𝐶𝛼𝛼 𝐷𝐷0𝐶𝐶 𝑡𝑡

𝛼𝛼𝜖𝜖(𝑡𝑡), where  𝐶𝐶𝛼𝛼  and 𝛼𝛼 can be obtained through a best-fit of experimental data. Although the 
Spring-Pot serves as an analytical model for simulating the viscoelastic behaviour, it lacks a complete 
physical interpretation. In classical models, it is possible to distinguish the contribution of the solid 
phase from that of the fluid phase, but in the Spring-Pot, such a distinction is not straightforward. 
Indeed, the term  𝐶𝐶𝛼𝛼, which represents the proportionality coefficient between stress and the fractional 
derivative of strain, lacks a clear physical definition, as it does not correspond to either an elastic 
modulus or a viscosity parameter.  

We can schematize the laminated package with MMPI with two Spring-Pots in series, where the total 
displacement of the system is equal to the sum of  their displacements and the stress is the same in 
every element, as indicated in Figure 4. The system of the laminated glass package with only one 
interlayer can be represented with one spring pot. The constants needed for the constitutive equation 
can be derived from the experimental data of the relaxation curve, by interpolating the points with a 
piecewise function of power laws, which correspond to lines in the bi-log graph. The slope of the lines 
is 𝛼𝛼 , and 𝐶𝐶𝛼𝛼 represents the stiffness value at 𝑡𝑡 = 1 𝑠𝑠, in a specific temporal branch. 

 

Fig. 4: Scheme of the problem presented in figure 1. The two materials the compose the interlayer are modelled 
as full viscoelastic materials with the fractional derivative constitutive law here represented as a spring pots. 

The fractional derivatives in time of the constitutive equation (4) are numerically approximated using 
the L1 formula, which enables the use of nonuniform time meshes. This approach provides several 
key benefits. First, a time mesh in logarithmic scale progression allows for an accurate representation 
of each branch of the relaxation function over a wide range of time scales; in contrast, constant time 
steps would fail to interpolate all branches with comparable precision, resulting in a loss of accuracy in 
the numerical solution. Second, the variable time-step approach significantly reduces computational 
effort by requiring fewer steps to follow the relaxation function for long periods of observation, enabling 
efficient calculation over extensive observation times.  



 

The numerical problem has been solved through a finite element code. specifically written in MATLAB 
and Python. This implements the constitutive equation of the polymeric interlayer based on fractional 
derivatives (numerically approximated with the L1 formula), made possible by the approximation of 
their relaxation function with power laws. The Finite Element Fractional Viscoelastic (FVFV) model is 
described in detail in (Santi & Royer-Carfagni, 2025), where it has been used for the simulation of the 
long-term viscoelastic behaviour of a laminated glass structure in a four-point bending test, 
demonstrating its accuracy by comparison with experimental results. The numerical approximation of 
fractional derivatives can be also performed via the Grünwald-Letnikov approximation (Scherer, Kalla, 
Tang & Huang, 2011), which is very efficient since it provides the direct construction of a triangular 
matrix that operates on the discretized array of values of the relevant variables. The triangular structure 
of this matrix facilitates the numerical solution. However, one of the major drawbacks of this method is 
that it is based on a discretization in constant time steps: when the interval of observation is wide, too 
many steps would be needed to describe the long-term response. On the other hand, enlarging the 
time step results in a loss of accuracy. The major advantage of using the L1 formula in the finite element 
code is that it is compatible with a non-constant time-mesh size. A comparison between the Grünwald-
Letnikov and the L1 formula approaches is presented in (Santi & Royer-Carfagni, 2024). 

The finite element scheme for the numerical resolution of this problem is based on a two-node element 
with three degrees of freedom, corresponding to the displacement along the x-direction of the points 
A, B and C indicated in Figure 3.  

 

Fig. 5: Finite element scheme of the model used to solve the numerical problem in figure 1. The element is 
described with node with four degrees of freedom each. 

This mathematical treatment allows to calculate the deformation of the two different systems 
represented in Figure 4 and compare their deformations. Once we know the deformation of the system 
with the two spring pots in series, it is possible to calculate the stress trend over the observation time, 
and in the end, by reversing Equation (3), it is possible to find the trend of the effective relaxation 
function 𝑅𝑅(𝑡𝑡), which describes the behaviour of the laminated glass structure with the MMPI. For the 
model validation, the relaxation function 𝑅𝑅(𝑡𝑡) is compared to the relaxation curve’s experimental points, 
preliminary obtained with DTMA and showed in Figure 2. 

It is important to point out that the FEFV model furnishes a full viscoelastic characterization of the 
stress in the polymeric material, which implies that the strain in a specific observation time step does 
not only depend on the stress in the same time step, but also to the previous state of stresses starting 
from the beginning of the load application on the material. This is mathematically described by the 
convolution integral of the Boltzmann superposition principle (Equation 3). 

3. Numerical results and model validation 

The deformation trends in time obtained through the FEFV model are showed in Figure 6, where the 
three cases at different environmental temperatures 20oC (a), 30oC (b), 40oC (c) are compared, when 
using the relaxation functions of the two materials (𝑅𝑅1= Stiff PVB and 𝑅𝑅2= Acoustic PVB) in the spring 
pots series (black dashed line,) and when using the relaxation function of the same two combined 
materials with red dashed lines, as showed in Figure 4. The shear deformations are obtained with 
Equation 5, using the output values of the FEFV model; in the first case the total deformation is obtained 
by summing up the deformations of the two materials, i.e., 𝜖𝜖 =  𝜖𝜖1 +  𝜖𝜖2. 



 

The two deformation trends are expected to be almost the same (𝜖𝜖 ≅ 𝜖𝜖𝑚𝑚); from Figure 6 it is possible 
to observe that this is verified with always some uncertainty, which results from the inevitable 
measurement errors I the DTMA analysis of the relaxation function, used as an input data for the 
numerical model.  

 

Fig. 6: Deformation 𝜖𝜖(𝑡𝑡) for the two different cases of Figure 4, for the three considered temperatures 20oC (a), 
30oC (b), 40oC (c). 

The obtained results confirm that the fractional viscoelastic model produces reliable results. The 
second step consists in calculating the relaxation curve from the previously obtained strain trends. This 
is possible by inverting Equation 4 using as an input data the deformation 𝜖𝜖 =  𝜖𝜖1 + 𝜖𝜖2 that describe 
the mechanical response of the laminated glass structure with the MMPI. The result is shown in Figure 
7 at different environmental temperatures 20oC (a), 30oC (b), 40oC (c), and compared with the 
experimental results of the relaxation curve of the same MMPI obtained through DTMA analysis. We 
conclude that the FEFV model can accurately predict the long-term response of the composite material 
given the known relaxation function of the two separates materials and their thickness ratio. The 
simulated relaxation function well fits with the experimental points represented with the red triangles.  

 

Fig. 7: Simulated relaxation function of the MMPI obtained through the FEFV model, represented with black 
dashed line, compared with the red triangles representing the experimental points of the relaxation functions of 

the same interlayer obtained though DTMA, at different temperatures 20oC (a), 30oC (b), 40oC (c). The 
polymeric materials used are Stiff PVB and Acoustic PVB. 

The proposed model is based on a full viscoelastic analysis of the polymeric material. In order to 
emphasize how important it is to consider such a material model in this type of analysis, a comparison 
with the simple elastic model already proposed in (Schuster, Härth, Thiele & Bennison, 2023) is now 
developed. Here, the relaxation function is simply calculated as the inverse stiffness at time t of the 
multilayer, which is approximated from the inverse addition of the individual stiffnesses at time t, i.e., 

ℎ1+ℎ2
𝑅𝑅𝑚𝑚(𝑡𝑡) = ℎ1

𝑅𝑅1(𝑡𝑡) + ℎ2
𝑅𝑅2(𝑡𝑡).                                                                                                                     (6) 

The result of this comparison is shown in Figure 8. Observe that in the early stages of observation time 
the two approaches give the same result, because the memory effect of the polymer has not yet a 



 

great influence. Moving to longer observation times, the difference between the two solutions becomes 
more evident. The elastic model gives reliable results for an observation time of approximately ~102 
seconds, but it is not sufficient to describe the long-term response of the MMPI. Instead, the FEFV 
model is in good accordance with the experimental results for the entire observation time.  

 

Fig. 8: Simulated relaxation function of the MMPI obtained through the FEFV mode,l represented with black 
dashed line, and the simulated relaxation function obtained with the elastic model, indicated with yellow line; 

comparison with the red triangles representing the experimental points of the relaxation functions of the same 
interlayer obtained via DTMA, at different temperatures 20oC (a), 30oC (b), 40oC (c). The polymeric materials 

used are Stiff PVB and Acoustic PVB. 

Since the model is validated, a final analysis is now proposed to show the potential of this approach in 
predicting the mechanical behaviour of an MMPI. A comparison has been made between two different 
types of interlayers, the one previously analysed composed by Stiff PVB and Acoustic PVB, and 
another one where the Stiff PVB has been replaced by a Sentry Glass sheet with the same thickness. 
Our aim is to show the influence of this material on the mechanical performance of the global package 
at different environmental temperatures 20oC (a), 30oC (b), 40oC (c).  Figure 9 shows the result of this 
comparison, also considering for completeness the elastic solution previously discussed. In the first 
row (Figures 9 a, b, c) we compare the two solutions corresponding to the two different materials, 
juxtaposed to the experimental points and the elastic solutions only in the first case. It is possible to 
observe that the sentry Glas does not have a big influence on the mechanical performance of the MMPI 
at 20o C since the two solutions almost overlap;  its influence becomes more evident by increasing the 
temperature, when the relaxation function of Stiff PVB drops out and stiffness is lost (Figure 2). On the 
contrary, the response of Sentry Glas tends to be more stable at higher temperatures, as it is clear 
from the graphs of the second row (Figures 9 d, e, f). Here, the comparison between the FEFV and the 
elastic solution in the second case (MMPI is composed by Sentry Glas and Acoustic PVB) is also 
shown, . Now the elastic solution is not able to correctly predict the relaxation function of the composite 
and badly fails for long observation times. 

 



 

 

Fig. 9: Simulated relaxation function of the MMPI obtained through the FEFV model, represented with black and 
blue dashed lines, and the simulated relaxation function obtained with the elastic model, represented with purple 
line; comparison with the yellow triangles, representing the experimental points of the relaxation functions of the 

same interlayer obtained though DTMA, at different temperatures 20oC (a), 30oC (b), 40oC (c). Comparison 
between two different cases: when the MMPI is composed by 𝑅𝑅1= Stiff PVB, 𝑅𝑅2= Acoustic PVB and 𝑅𝑅1= Sentry 

Glas, 𝑅𝑅2= Acoustic PVB. 

4. Conclusions 

A novel approach to characterize the mechanical performance of a MMPI, able to predict the 
corresponding relaxation function, has been proposed. The approach is based on an innovative 
method to interpolate the experimental relaxation curve from DTMA analysis, which uses piecewise 
branches of power laws. Using this method, it is possible to write the constitutive equation of the 
polymeric material through fractional derivatives to interpret their viscoelastic response. In particular, 
the stress is proportional to a real-order derivative, intermediate between 0 and 1 of the strain over 
time. This approach considers a full viscoelastic characterization of the material that it is crucial for this 
kind of analysis. The model can be solved through a finite element numerical analysis, that we named 
FEFV model. The predicted relaxation function is in very good agreement with the experimental points. 
On the other hand, if an elastic model is considered, results are not reliable. This approach can also 
be used to predict the relaxation function of any kind of MMPI that combines two or more different 
polymers with different thickness; it permits to readily evaluate the mechanical performance without 
having to perform expensive and time-consuming experimental campaigns. This model can be very 
helpful in the design of new types of MMPI that can combine different properties on the laminated glass 
structure, including better acoustic performance. Having such powerful tool can helps customers to 
find the best solution for a MMPI for their specific application. by furnishing a reliable and easily 
interpretable solutions. 
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