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Abstract

Vacuum insulated glazing (VIG) is a glass 
structure where two glass panes are connected 
by a hermetic seal over their perimeter, with 
a vacuum gap between the panes. One case 
is when this seal is made with solder glass, 
which is a rigid bridge between the two panes. 
When a temperature difference over the VIG is 
established the temperature profile produces 
bending of the panes and causes deformations, 
and stresses, in the glass, which affect the 
strength of glass. In this paper we present 
a novel approach to formulate an analytical 
solution for the deformation and stress in a 
VIG due to a thermo-mechanical load. We 
apply the analytical solution to three different 
VIG boundary conditions: free edge, simply 
supported, and fixed. We include rectangular 
shaped VIG configurations where the two glass 
panes can be of different thicknesses. Results 
are presented for the extreme stress case, 
where each pane is at uniform temperature 
over the whole surface.

Introduction

In the EU, the use of high-performance 
insulating windows has the potential of 
reducing the total energy consumption of 
the building sector by 40% by 2050. However, 
this is only possible if the aged and existing 
building stock is retrofitted with insulating 
windows. The Vacuum Insulated Glazing (VIG) 
is a technology that has the potential to impact 
the whole building stock in the EU because of 
its thin profile and low thermal conductance; 
typically, the VIG would be two panes of 3 mm 
glass, and a U-value between 0.5-1.0 W m-2 
K-1. A primary concern in the application of the 
VIG design is the ultimate strength of the units 
with respect to a thermo-mechanical load. 

The VIG is constructed from two glass panes 
that are sealed together at their edges using a 
hermetic and rigid seal. In typical conditions, 
the low thermal conductance of the VIG 
means that the individual panes are at quite 
different temperatures, and thus, the relative 
thermal expansion of each pane causes the 
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VIG to bend. The deformation and stress due 
to a thermal load have been discussed in ISO 
Standard 19916-3 [1]. In this ISO standard 
the analytical results of deformations and 
stresses for freely supported VIG units, under 
a temperature difference, are outlined. Simko 
et al. [2] also presented the measurement and 
numerical simulations of the thermal stresses 
and deformations in a VIG. The authors showed 
that measurement results and calculations 
using the Finite Element Method (FEM) are 
in good agreement. They also provided an 
analytical solution, which would provide the 
means for architects and engineers to simply 
and quickly determine the impact of VIG design 
options, with respect to thermo-mechanical 
loading.
 
It is clear that measurement and/or FEM 
simulations of the thermo-mechanical load 
on a VIG is time consuming and costly. In this 
study our focus was to determine an analytical 
solution to the problem of thermo-mechanical 
loading. In particular we include the outcomes 
of the free, simply supported, and fixed 
edge boundary conditions. The theoretical 
background for the calculation of the stresses 
and deformations are presented in detail. 

Theory of thermal stresses and 
deformations

Thermal stresses with temperature profile only 
in one dimension can be presented for the case 
of a beam and plate. The basic equations are 
universal, and results can vary with different 
thermal and external loads and boundary 
conditions. To present the equations for the 
stresses and deformations the theory is first 
presented for a beam and next for a plate. 

Thermal stresses in beams
According to Hooke’s law the relation between 
stresses and strains with thermal strain 
included is Thermal stresses in beams 

According to Hooke’s law the relation between stresses and strains with thermal strain included is  
𝜀𝜀!! − 𝛼𝛼𝛼𝛼 = "!!

#
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Where E is Young’s modulus, α is thermal expansion coefficient, θ is the temperature difference 
between local temperature T and global reference temperatures Tref (θ=T-Tref). In the Equation (1) 
the strain 𝜀𝜀!! can be divided in two parts according to Euler-Bernoulli hypothesis: axial strain 𝜀𝜀$ and 
strain due to curvatures 1/𝜌𝜌  

𝜀𝜀!! = 𝜀𝜀$ +
%
&

       (2) 

In this equation z is the distance in the z-direction from the neutral axis. The bending is simplified 
only in the z direction because conditions for bending are assumed to be only in the z-direction. 
By combining Equations (1) and (2) the stress can be presented as 

𝜎𝜎!! = 𝐸𝐸 ,𝜀𝜀$ +
%
&
− 𝛼𝛼𝛼𝛼-.      (3) 

When a beam is freely supported the external forces should be zero;  
	∫ 𝜎𝜎!!𝑑𝑑𝑑𝑑 = 0'         (4) 

	∫ 𝜎𝜎!!𝑧𝑧𝑧𝑧𝑧𝑧 = 0'         (5) 
These equilibrium equations lead to the result that Equation (3) can be expressed as 

𝜎𝜎!! =
("
'
+ )"

*
𝑧𝑧 − 𝐸𝐸𝐸𝐸𝐸𝐸      (6) 

Where thermal forces, cross-section area and moment of inertia, in the case illustrated in Fig. 1 are 
𝑁𝑁+ = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼' = 𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃,𝑡𝑡, + 𝜃𝜃-𝑡𝑡-)    (7) 

𝑀𝑀+ = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼' = -
,
𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃, − 𝜃𝜃-)𝑡𝑡-𝑡𝑡,   (8) 

𝐴𝐴 = ∫ 𝑑𝑑𝑑𝑑' = 𝑊𝑊(𝑡𝑡- + 𝑡𝑡,)     (9) 

𝐼𝐼 = ∫ 𝑧𝑧,𝑑𝑑𝑑𝑑' = -
-,
𝑊𝑊(𝑡𝑡- + 𝑡𝑡,).                (10) 

 

 
Figure 1. The cross-section of the beam. 

 
The simplified results of the integrations are calculated for the case where the gap between panes is 
small compared to the glass thicknesses (g << t1 and t2) and the width of the solder glass edge (the 
edge seal) is small compared to the glass pane width and length (b << W and L). 
When there are only external forces acting on the beam then the stress is given as, 
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In the case where external forces (such as atmospheric pressure) and thermal load are both act on 
the VIG pane then the total stress is the combination of Eqs. (6) and (11) 
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Where E is Young’s modulus, α is thermal 
expansion coefficient, θ is the temperature 
difference between local temperature T and 
global reference temperatures Tref (θ=T-Tref).  
In the Equation (1) the strain εxx can be divided 
in two parts according to Euler-Bernoulli 
hypothesis: axial strain ε0 and strain due to 
curvatures 1/ρ 
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Figure 1. The cross-section of the beam.

The simplified results of the integrations are calculated 
for the case where the gap between panes is small 
compared to the glass thicknesses (g << t1 and t2) and 
the width of the solder glass edge (the edge seal) is 
small compared to the glass pane width and length  
(b << W and L).
When there are only external forces acting on the beam 
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In the case where external forces (such as atmospheric 
pressure) and thermal load are both act on the VIG 
pane then the total stress is the combination of Eqs. (6) 
and (11)
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Thermal stresses in plates
When considering a plate, the equations in the previous 
section are changed to a two-dimensional form in 
plane stress state (σzz=0). A plate is defined according 
to Kirchhoff-Love hypothesis, which means that Eq. (1) 
is now given as, 

Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
means that Eq. (1) is now given as,  

𝜀𝜀!! − 𝛼𝛼𝛼𝛼 = -
#
;𝜎𝜎!! − 𝜈𝜈𝜈𝜈00= ,     (13) 

𝜀𝜀00 − 𝛼𝛼𝛼𝛼 = -
#
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and the shear strain is

Thermal stresses in plates 
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Based on Eqs.(13) to (15) then the stresses are,
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 

𝜎𝜎!! = 𝜎𝜎00 =
-

-32
,("

%

'%
+ )"

%

*%
𝑧𝑧 − 𝛼𝛼𝛼𝛼- .    (19) 

Where 𝑁𝑁+
4 , 𝑀𝑀+

4 , 𝐴𝐴′ and 𝐼𝐼′ are similar to Eqs. (7)-(10), but relative to unit length.  
𝑁𝑁+

4 = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼% = 𝐸𝐸𝐸𝐸(𝜃𝜃,𝑡𝑡, + 𝜃𝜃-𝑡𝑡-),    (20) 

𝑀𝑀+
4 = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼% = -

,
𝐸𝐸𝐸𝐸(𝜃𝜃, − 𝜃𝜃-)𝑡𝑡-𝑡𝑡,,   (21) 

𝐴𝐴4 = ∫ 𝑑𝑑𝑑𝑑% = (𝑡𝑡- + 𝑡𝑡,),     (22) 

𝐼𝐼′ = ∫ 𝑧𝑧,𝑑𝑑𝑑𝑑% = -
-,
(𝑡𝑡- + 𝑡𝑡,)..     (23) 

The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
are, 

𝜎𝜎!! =
(!%

'%
+ )!

%

*%
𝑧𝑧 + -

-32
,("

%

'%
+ )"

%

*%
𝑧𝑧 − 𝛼𝛼𝛼𝛼- ,   (24) 

𝜎𝜎00 =
($%

'%
+ )$

%

*%
𝑧𝑧 + -

-32
,("

%

'%
+ )"

%

*%
𝑧𝑧 − 𝛼𝛼𝛼𝛼-.   (25) 

For a plate with external forces the shear stress can be calculated as,  

𝜎𝜎!0 =
(!$%

'%
− )!$

%

*%
𝑧𝑧.     (26) 

 
Thermal deformations 
The curvature and deformations are similar between beam and plate cases. The curvature for freely 
supported VIG is,  

-
&!
= −𝑤𝑤,!! = −)"

#*
= −)"

%

#*%
 .     (27) 

Then deformation in z-direction is, 
𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 	∫ ∫ 𝑤𝑤,!! 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

!
$

!
$ ∫ ∫ 𝑤𝑤,00 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0
$

0
$   .  (28) 

The expansion in the neutral plane in the u and v directions is the integration of the strain over the 
length.  

𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 	∫ 𝜀𝜀!!𝑑𝑑𝑑𝑑
!
$ = ∫

((!/("!)327($/("$8
#'!

𝑑𝑑𝑑𝑑!
$     (29) 

𝑣𝑣(𝑥𝑥, 𝑦𝑦) = 	∫ 𝜀𝜀00𝑑𝑑𝑑𝑑
0
$ = ∫

7($/("$832((!/("!)
#'$

𝑑𝑑𝑑𝑑0
$     (30) 

 
 
 

	(16)

Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
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When a plate is freely supported over its edges,  
the external forces should be zero in the x- and y-direction.  
For a plate, the integration in Eqs. (4) and (5) is  
calculated only over the glass thickness and in both  
x- and y-directions. Thus, Eqs. (16) and (17) change to
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The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
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Where N'T, M'T, A' and I' are similar to Eqs. (7)-(10),  
but relative to unit length. 

Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
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Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 
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The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
are, 
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Thermal deformations 
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Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 
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The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
are, 
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The expansion in the neutral plane in the u and v directions is the integration of the strain over the 
length.  
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Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
means that Eq. (1) is now given as,  

𝜀𝜀!! − 𝛼𝛼𝛼𝛼 = -
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 
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Where 𝑁𝑁+
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The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
are, 
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For a plate with external forces the shear stress can be calculated as,  
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The expansion in the neutral plane in the u and v directions is the integration of the strain over the 
length.  
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The external forces can be added to the plate as  
in Eq. (11) of the beam case. Then, if the thermal  
load and external forces are both involved and Eqs (11)  
and (19) are combined, as result the stresses are,

Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
means that Eq. (1) is now given as,  
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and the shear strain is   
𝜀𝜀!0 =

-
,1
𝜎𝜎!0 =

-/2
#
𝜎𝜎!0 .    (15) 
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 
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Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
means that Eq. (1) is now given as,  
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Thermal stresses in plates 
When considering a plate, the equations in the previous section are changed to a two-dimensional 
form in plane stress state (𝜎𝜎%% = 0). A plate is defined according to Kirchhoff-Love hypothesis, which 
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When a plate is freely supported over its edges, the external forces should be zero in the x- and y-
direction. For a plate, the integration in Eqs. (4) and (5) is calculated only over the glass thickness 
and in both x- and y-directions. Thus, Eqs. (16) and (17) change to 
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The external forces can be added to the plate as in Eq. (11) of the beam case. Then, if the thermal 
load and external forces are both involved and Eqs (11) and (19) are combined, as result the stresses 
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For a plate with external forces the shear stress can be calculated as,  
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Thermal deformations 
The curvature and deformations are similar between beam and plate cases. The curvature for freely 
supported VIG is,  
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The expansion in the neutral plane in the u and v directions is the integration of the strain over the 
length.  
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Thermal stresses in plates 
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Thermal stresses in beams 
According to Hooke’s law the relation between stresses and strains with thermal strain included is  

𝜀𝜀!! − 𝛼𝛼𝛼𝛼 = "!!
#

        (1) 
Where E is Young’s modulus, α is thermal expansion coefficient, θ is the temperature difference 
between local temperature T and global reference temperatures Tref (θ=T-Tref). In the Equation (1) 
the strain 𝜀𝜀!! can be divided in two parts according to Euler-Bernoulli hypothesis: axial strain 𝜀𝜀$ and 
strain due to curvatures 1/𝜌𝜌  

𝜀𝜀!! = 𝜀𝜀$ +
%
&

       (2) 

In this equation z is the distance in the z-direction from the neutral axis. The bending is simplified 
only in the z direction because conditions for bending are assumed to be only in the z-direction. 
By combining Equations (1) and (2) the stress can be presented as 

𝜎𝜎!! = 𝐸𝐸 ,𝜀𝜀$ +
%
&
− 𝛼𝛼𝛼𝛼-.      (3) 

When a beam is freely supported the external forces should be zero;  
	∫ 𝜎𝜎!!𝑑𝑑𝑑𝑑 = 0'         (4) 

	∫ 𝜎𝜎!!𝑧𝑧𝑧𝑧𝑧𝑧 = 0'         (5) 
These equilibrium equations lead to the result that Equation (3) can be expressed as 
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*
𝑧𝑧 − 𝐸𝐸𝐸𝐸𝐸𝐸      (6) 

Where thermal forces, cross-section area and moment of inertia, in the case illustrated in Fig. 1 are 
𝑁𝑁+ = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼' = 𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃,𝑡𝑡, + 𝜃𝜃-𝑡𝑡-)    (7) 

𝑀𝑀+ = ∫ 𝐸𝐸𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼' = -
,
𝐸𝐸𝐸𝐸𝐸𝐸(𝜃𝜃, − 𝜃𝜃-)𝑡𝑡-𝑡𝑡,   (8) 

𝐴𝐴 = ∫ 𝑑𝑑𝑑𝑑' = 𝑊𝑊(𝑡𝑡- + 𝑡𝑡,)     (9) 

𝐼𝐼 = ∫ 𝑧𝑧,𝑑𝑑𝑑𝑑' = -
-,
𝑊𝑊(𝑡𝑡- + 𝑡𝑡,).                (10) 

 

 
Figure 1. The cross-section of the beam. 

 
The simplified results of the integrations are calculated for the case where the gap between panes is 
small compared to the glass thicknesses (g << t1 and t2) and the width of the solder glass edge (the 
edge seal) is small compared to the glass pane width and length (b << W and L). 
When there are only external forces acting on the beam then the stress is given as, 

𝜎𝜎!! =
(
'
+ )

*
𝑧𝑧 .      (11) 

In the case where external forces (such as atmospheric pressure) and thermal load are both act on 
the VIG pane then the total stress is the combination of Eqs. (6) and (11) 

𝜎𝜎!! =
("/(

'
+ )"/)

*
𝑧𝑧 − 𝐸𝐸𝐸𝐸𝐸𝐸     (12) 
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The thermal stresses depend on the magnitude 
of the thermal load (the temperature difference 
across the VIG) and the edge of unit boundary 
conditions (the frame). In the examples given 
in this study, the thermal load is similar in 
all cases. That is, when considering the top 
and bottom parts of a beam, or the plate, 
are at a uniform temperature and the edge 
area is at the average temperature of the two 
parts. In practice the VIG can be supported 
several different ways depending on the frame 
installation. In following cases the analytical 
results are compared to FEM results. In FEM 
results are for the same geometry as in Fig. 
1, but in the analytic results the gap distance 
g is set to zero as also the width of the solder 
glass b. Dimensions in the example case are, 
glass size 350 mm x 500 mm, bottom glass 6 
mm thick at 10 °C, and top glass 4 mm thick 
at 20 °C. In the FEM analysis the gap height 
is 0.2 mm, and the width of solder glass is 5 
mm. The material properties are the same in 
the analytical and FEM calculations: Young’s 
modulus E is 70 GPa, Poisson’s ratio ν is 0.22 
and the thermal expansion coefficient α is 
9·10-6 1/°C. N'T, M'T, A' and I' can be calculated 
using Eqs. (20)-(23). 

To calculate stresses the boundary conditions 
form the external forces and moments. 
Boundary conditions also effect the 
deformations. For the free case the boundary 
condition does not create external forces or 
moments, but for the simply supported and 
fixed cases the boundary conditions form 
external moments which are best represented 
using a trigonometric series. Also, the 
deformations in the simply supported and fixed 
cases are presented using the trigonometric 
series. For all three cases the results are 
quite different when considering the centre of 
the unit or the edge region. In the following 
sections the results are focused on surfaces 
stresses. In the glass between the top and 
bottom surfaces the stress changes linearly as 
in Eqs. (24) and (25). 

Freely supported case 
For freely supported case the stress conditions 
depend on the where in the pane the stresses 
are defined. The stresses at the centre of the 
pane are based on the plate case and stresses 
at the edge zone are based on the results from 
the beam solution. 

In the free case, where there is no support at 
the edge, the external forces and moments are 
zero N'x=N'y=M'x=M'y=0. Then stresses can be 
calculated from Eq. (19), where N'T, M'T, A' and 
I' are from Eqs. (20)-(23). The analytic stress 
results for each glass surface are calculated 

below for the case where θ2=∆T/2, θ1=-∆T/2, θedge=0 and dimensions are as in 
Figure 1. The temperature difference ∆T=T2-T1. As an example, the stresses 
calculated on surface 1 are
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To calculate stresses the boundary conditions form the external forces and moments. Boundary 
conditions also effect the deformations. For the free case the boundary condition does not create 
external forces or moments, but for the simply supported and fixed cases the boundary conditions 
form external moments which are best represented using a trigonometric series. Also, the 
deformations in the simply supported and fixed cases are presented using the trigonometric series. 
For all three cases the results are quite different when considering the centre of the unit or the edge 
region. In the following sections the results are focused on surfaces stresses. In the glass between 
the top and bottom surfaces the stress changes linearly as in Eqs. (24) and (25).  
 
Freely supported case  
For freely supported case the stress conditions depend on the where in the pane the stresses are 
defined. The stresses at the centre of the pane are based on the plate case and stresses at the edge 
zone are based on the results from the beam solution.  
 
In the free case, where there is no support at the edge, the external forces and moments are zero 
𝑁𝑁!

4 = 𝑁𝑁0
4 = 𝑀𝑀!

4 = 𝑀𝑀0
4 = 0. Then stresses can be calculated from Eq. (19), where 𝑁𝑁+

4 , 𝑀𝑀+
4 , 𝐴𝐴4 and 𝐼𝐼′ 
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Surfaces 2, 3 and 4 are calculated similarly. Stresses at the edge are calculated based on Fig. 1 for 
𝜎𝜎!! according to Eq. (6) and 𝜎𝜎00 = 0. All the equations for free case are presented in Table 1.  
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Surfaces 2, 3 and 4 are calculated similarly. Stresses at the edge are calculated 
based on Fig. 1 for σxx according to Eq. (6) and σyy=0. All the equations for free 
case are presented in Table 1. 

The results for surfaces 1-4 at the centre of the 
pane are same as presented in ISO 19916-3 [1] 
in simplified form, where the stresses at the 
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Figure 5. Stresses along diagonal line for fixed case.  
 
Deformations 
The deformations in all three cases are shown in Fig. 6. In these results analytical and FEM results 
are close to each other. Results also shows that more the VIG pane is fixed at the edge smaller the 
deformations are.  
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Figure 4. Stresses along diagonal line for simply supported case on surface 3 and 4. 
 
Fixed case 
In the fixed case compared to the simply supported case, the edge is fixed so that edge cannot bend. 
Also, the plate is fixed so that the plate cannot expand or shrink, relative to the edge. This means 
that 𝑁𝑁!

4 = −𝑁𝑁+
4 /(1 − 𝜈𝜈) and similarly in y-direction. In this case there is also external moment due 

to the thermal load and constrains and the equations for external moments are from [3], pp. 371-
376.  
 
Results in Fig. 5 shows that in fixed case the stresses in x- and y-direction are same in each separate 
surface. As seen in Fig. 6 the deformations in fixed case are small and VIG pane stays flat. This means 
in stresses that stresses in surfaces 1 and 2 are similar and stresses in surfaces 3 and 4 are similar. 
The results in analytical and FEM calculations are close to each other, except at the edge region. 
Shear stresses on all surfaces is close to zero at the outside from edge region and not shown in 
Fig. 5. 
 

For the edge stresses the results are 
compared at mid part of the edge. Results 
from FEM and the analytical cases are 
shown in Table 2. The edge stress is different 
comparing stresses at the centre of the glass 
because the edge temperature is different.  

FEM Analytical Analytical 
ISO 19916-3 [1]

Surface 1 -5.09 -5.17 -5.81

Surface 4 3.69 3.91 5.81

Table 2. Stresses at the edge

Simply supported case
In the simply supported case compared to 
the free case, the edge is constrained so that 
w=0 at the edge, but the edge can still be 
bent. In this case there is an external moment 
due to the thermal load and constraints. The 
equations for the external moments are from 
[3], pp. 365-367. The external moments and 
deformations of the pane are presented as a 
trigonometric series solution. The stresses are 
solved using Eqs. (24)-(26).

Plots of the results for different surfaces are 
shown in Figs 3-4. The analytical results at 
the surfaces 1 and 4 follow well FEM results. 
However, at the surfaces 2 and 3 there is 
differences in analytical and FEM results. This 
is due to differences in model. In FEM model 
the gap is in model with pillars, but in analytic 
model there is no gap. This is done to show 
better how different simplifications affect in 
results. Effect of the gap is seen in simply 
supported case, but not in free and fixed cases.  
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Figure 3. Stresses along diagonal line for simply supported case on surface 1 and 2. 
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Figure 4. Stresses along diagonal line for simply supported case on surface 3 and 4.

Figure 5. Stresses along diagonal line for fixed case. 
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The deformations in all three cases are shown 
in Fig. 6. In these results analytical and FEM 
results are close to each other. Results also 
shows that more the VIG pane is fixed at the 
edge smaller the deformations are. 

Conclusions

The results of our analytical solution are 
presented and compared to FEM simulations, 
and the agreement is found to be good. In the 
case of simply supported edges the results 
differ more because the vacuum gap is not 
explicitly included in the analytical solution. 
The case where both panes are at uniform 
temperature is an extreme case and is possible 
if the heat transfer coefficient between 
the glass surfaces and the environment is 
extremely high; for example, when a VIG is 
paced in a conductivity instrument for testing. 
In the usual measurement setup where there 
is a heat transfer coefficient of heat flow to 
and from the surfaces, the glass temperature 
is not uniform and from the centre as you 
approach the edge of glass the temperature 
varies exponentially towards the mean edge 
temperature [4], which affects the edge stress. 

In a typical window frame the constraint is 
somewhere between simply supported and 
fixed. Sometimes there can also be external 
normal force involved if the VIG pane is 
restricted to expand or shrink as in the fixed 
case. In our analytical method it is also 
possible to use different boundary conditions 
in adjacent edges if opposite edges are similar, 
which will change the external moments and 
forces. 

Our analytical approach is a simple and quick 
method without the expense of computational 
methods and measurements. Even though the 
analytical solution is for only in a few cases, the 
analytical results give a stress range and easily 
show the effect of size and thickness changes 
in the VIG. The analytical method is a simple 
and speedy way for engineers and architects to 
understand the design and performance of the 
VIG product.
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