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Abstract

Vacuum insulated glazing (VIG) defines an 
energy efficient glazing unit. Their thermal 
performance units can reach values as good 
as quadruple insulating glass, with thinner 
dimensions and less material. Owing to 
their internal vacuum, VIGs are under the 
permanent influence of the atmospheric 
pressure acting on them throughout their 
entire service life. To withstand the pressure 
and to ensure sufficient distance between 
the glass panes, small pillars are positioned 
in-between. Especially the area around 
the pillars is prone to damage during the 
manufacturing of a VIG and during its lifetime. 
In order to assess this damage efficiently, 
automatic damage detection is necessary. For 
this purpose, we use a convolutional neural 
network. The binary classification model 
achieves an accuracy of 100 % for clearly 
recognisable damage and is also able to 
visualize the detected damage. Through our 
object recognition model, the input resolution 
can effectively be increased by cropping 
the image before the classification. The 
proposed methods can therefore be used to 
detect systematic defects even without large 
amounts of training data. Damage detection 
and classification can be used for quality 
control and enables the application of fracture 
mechanical models for assessing the stability 
of initial cracks during lifetime.

Introduction

Connecting the domains of deep learning 
and glass structures is crucial to develop 
an automated damage evaluation method. 
Therefore, both areas will be briefly introduced.

Vacuum Insulated Glazing

Vacuum Insulated Glazing (VIG) units, in 
contrast to traditional insulated glazing units 
(IGU), are characterised by the fact that there 
is a vacuum between the glass panes instead 
of a gas [2]. This allows for thinner dimensions 
and lower weight compared to IGUs. Due to the 

Quality control for Vacuum Insulating Glass us-
ing Explainable Artificial Intelligence

internal vacuum, the panes are under constant 
atmospheric pressure over their service life. 
To maintain the gap between the glass panes, 
small pillars are positioned in a regular array 
between the panes (see figure 1). As a result 
of the indentation of the pillars on the glass 
surface, the contact stress near the pillar 
may damage the glass during manufacturing, 
transportation, and/or installation, which 
in turn reduces the lifetime of the VIG unit. 
Therefore, it is highly desirable to develop an 
automate damage detection and evaluation 
method in order to detect and possibly even 
prevent fractures.

Image Classification

Images can be very complex and difficult to 
analyse [10]. The most common backbone for 
detecting objects or classifying images are 
convolutional neural networks (CNN). CNNs 
filter the image for many different features 
[5]. In the first layer these features are very 
simple, like straight lines or specific colour 
combinations, but complexity increases with 
every additional layer. With this method, 
different large objects can be detected with 
mostly the same small filters, depending on 
their combination [4].

The different methods for image analysis 
can roughly be categorised in classification, 
localisation and segmentation. Classification 
has the goal to classify an image into different 
categories (e.g. residual neural network). 
Localisation aims to find for example the 
most accurate box that fits around a detected 
object and also classifies it (e.g. Region 
Based Convolutional Neural Networks). 
Image segmentation is about classifying the 
image pixel by pixel and is for example used 

Figure 1: pillar array of a real vig.

in medical imaging (e.g. Feature Pyramid 
Network). There are also mixed models like 
Mask-RCNN solving all of the problems above 
at once [11].

To understand the advantages and 
disadvantages of the methods, we must first 
understand how training works. For training, 
the model receives our solutions (y) for the 
respective input values (X) of the training data. 
This means that the y for all data must be 
created manually for the training data. The 
more complex the desired result, the greater 
the effort required to create the labels for the 
training data. In this work we will focus on 
how to maximise the results with a few tricks 
without the need for a very complex model or 
for complex labels. This makes it possible to 
quickly explore the potential of the data and 
avoid time-consuming mistakes.

Methods

Data Acquisition
To develop the method for quality control of 
VIGs, pictures of pillars were taken with a 
microscope. The microscope has a lens with 
a magnification of 1000 times, a resolution 
of 1920x1080 pixel and automatic exposure 
control. The diameter of the examined pillars is 
about 0.5 mm. For a better and more detailed 
result, different backgrounds were compared. 
A black background was selected for this 
work, because of the enhanced visibility of 
cracks and compared to a white background. 
The microscope was manually positioned and 
triggered, the image quality was manually 
controlled and finally the images were 
manually sorted into two categories: damaged 
and undamaged. As an example, two pillars 
from each category are shown in figure 2. On 
average, the processing steps for a single pillar 
take up to 2 minutes.

Image Preprocessing
In order to maximize the effective resolution 
for our classifier, we will use a localisation 
model to optimally crop the image. The second 
step is augmenting the images to improve our 
model’s performance and make it more robust 
to new data.

Resolution optimization
Theoretically CNNs can handle very large 
images as long as there is enough memory and 



GPD Glass Performance Days 2021 GPD Glass Performance Days 2021- 3 -  - 2 -

Qu
al

ity
 M

an
ag

em
en

t

Qu
al

ity
 M

an
ag

em
en

t

computing power. With the size of the images, 
not only the size of the input increases, but 
necessarily also the number of layers. With 
increasing complexity, a model requires 
more computing power and training data 
and often tends to be less stable. Reducing 
the training data to relevant information only 
could prevent such problems from the start. 
Therefore, the images should be cropped 
as small as possible so that only the pillar 
and the damage are in the image. Since the 
microscope was not perfectly centred over the 
pillar before the picture was taken, we had 
to locate the pillar first. For this we used the 
PyTorch implementation of Faster-RCNN with 
a ResNet-50-FPN backbone [7].

The pillars location is returned as a bounding 
box by the trained object detector. This 
information can be used to zoom into images 
without losing relevant information. In our 
case, we were capable of reducing the 
resolution from 1000 * 1000 to 700 * 700, 
which already roughly halves the number of 
pixels. After zooming into the image, we can 
make use of the symmetry of the images. 
Even though our images contain asymmetric 
cracks, those images contain either cracks in 
all of its quadrants or in none of its quadrants 
and are therefore symmetrical for their label. 
This allows us to split the image into the four 
quadrants, without the need for creating new 
labels. Classification models like the ResNet 
halve the size of its layers several times to 
efficiently detect different sized details. We 
chose 352 * 352 as resolution for the quadrants 
instead of 350 * 350, so that the resolution can 
be divided often enough without a remainder. 
As a result, the images overlap slightly and 
the size of the model input is further reduced 
to one quarter. The 3 steps are displayed in 
figure 3 from left to right: captured image, 
cropped image and quadrant. The figure shows 
an example with the pillar very near the image 
border. Since the resolution of all images 

Figure 2: damage classes a) undamaged and 
b) damaged.

Figure 3: image preprocessing from a) the raw image to b) the cropped image to c) the quadrant.

Table 1: summary of the training results

Figure 4: The figure shows a) the general architecture of the custom model and b) the convolution 
block. The layers of the custom model are as follows: input (INP), batch norm (BN), convolution 2D 
(Conv), convolution block (CB), max pooling 2D (MP), global average pooling (GAP) and dense (D).

needs to be the same and the pillars have to be 
centred before splitting it into quadrants, the 
missing parts of the images must be filled with 
black pixel. In total, the number of input pixels 
has been reduced to an eighth.

Augmentation
In order to improve the performance of 
our model and to make it more robust for 
future applications (e.g. pictures are taken 
with different microscopes or a VIG from a 
different manufacturer) we used multiple data 
augmentation methods [9]. We used a custom 
script for randomly erasing parts of the image. 
Our script overwrites 25-40 % of the image with 
random values by a chance of 50 %. In addition, 
we have used random rotation, random 
channel shift, horizontal flip, vertical flip and 
random brightness.

Classification Model
Assigning an input to a specific class is called 
classification. In a neural network, there is 
usually one output neuron per class. The value 
of this neuron can be regarded as the predicted 
probability that the input belongs to a certain 
class. The classification problem in this work 
consists of two exclusive classes and thus 
a single value is sufficient to represent both 
classes. In order to achieve the best possible 
results, we have developed our own model for 
this project based on residual neural network 
(ResNet) [3]. The ResNet is characterised 
by the so-called skip connections. The input 
of a convolution block is passed by its skip 
connection to two different layers: the filtering 
layer at the start and the output in the end 
of the block. In a ResNet the next layer then 
receives the sum of unfiltered and filtered 

data, while in our model the filtered data gets 
concatenated to the unfiltered data. Thus, 
the respective results of each convolution 
block remain unchanged and can be used 
together by the last filtering layer. Without skip 
connections, errors from previous layers can 
no longer be compensated and sometimes can 
even be amplified. The final architecture of our 
model is shown in figure 4.

Training Parameter
161 images each of Pillars with damage and 
without damage were selected (see figure 
5) and 20 % of them were separated before 
augmentation in the form of a validation set. 
The maximum number of epochs was capped 
at 100 epochs. The batch size was set to 6 and 
the following callbacks were used:

1. Early stopping (patience of 30 epochs)
2. Reduce learning rate on plateau (patience of 8 
epochs and reduction factor of 0.1)

Early stopping is used to stop the training, 
if the model’s improvement stales, to save 
computing time. It regulates how many 
epochs the model is trained, although it no 
longer improves. Generally, the performance 
of a model does not improve in a strictly 
monotonic manner, but rather fluctuates with 
an upward trend. This means that the model 
should continue to train even with temporary 
performance degradation as long as there is 
an upward trend [6]. To avoid a problem caused 
by too high a learning rate, the learning rate 
is reduced when a plateau in improvement 
occurs. As a result, the learning rate will be 
decreased 3 times, before training is stopped, 
due to lack of performance improvement.

Gradient-weighted Class Activation Mapping
Gradient-weighted Class Activation Mapping 
(Grad-CAM) allows to visualize where a 
model locates an object of a specific class [8]. 
Thus, more knowledge can be gained about 
a model and its intermediate results can be 
used for localisation, even though the model 
has only been trained for classification. The 
Grad-CAM returns a value per pixel of the 
last filtering layer, which can be interpreted 
as the probability of detection. We visualised 
these values with a colormap from the OpenCV 
library [1]. For this colormap, purple means that 
nothing was detected and turquoise means that 
some kind of damage was detected.

Results and Discussion

For the evaluation of the models, we have 
summarised the results in table 1 from the 5 
runs. For each run, we only used the weights 
of the epoch with the lowest loss. We used the 
following metrics to evaluate the performance 
of the models: minimum area under the curve 
(AUC) for the receiver operating characteristic 
(ROC), maximum number of training epochs, 
false negatives (FN) with a classification 
threshold of 95 %, false positives (FP) with 
a classification threshold of 10 %, minimum 
accuracy, minimum precision with a threshold 
selected for 100 % recall and mean loss (for 
binary crossentropy). The custom model 
achieves better results than the other models 
in all metrics. Only in one run did the custom 
model achieve a non-perfect result in a single 

Figure 5: dataset with undamaged pillars on 
the top and damaged pillars on the bottom.

Figure 6: Grad-CAM results of the custom model.

Figure 7: Grad-CAM results of the 
ResNet50V2 model.

metric due to a single FP classification. 
In most runs, the ResNets also had good 
results with 100 % in accuracy, AUC for 
ROC and precision at 100 % recall. In these 
metrics, ResNet152V2 was imperfect 3 times, 
ResNet101V2 2 times and ResNet50V2 1 time. 
In the FP and FN metrics, the ResNets were 
only error-free once or twice each.
Using the same images as in figure 5, we 
examined the performance of the custom 
model and the ResNet50V2 using Grad-CAM. 
While the custom model mainly detects the 
cracks themselves and not the pillar (see 
figure 6), the ResNet50V2 focuses on the 
pillars and rarely detects the cracks (see figure 
7). This supports the result from our validation 
set and suggests that the custom model would 
probably also respond very well to new data.

In order for the pillars to be examined 
efficiently, the recording of the pillars should 
also be automated. At this stage, microscope 
positioning, image quality checking and 
documentation are done manually and can 
take up to 2 minutes per pillar per side. Since 
a VIG has hundreds of pillars, it takes tens of 
hours to examine a single panel. Automating 
the pillar recordings would not only reduce 
costs, but could also speed up the process and 
gather additional information in the process. 
The orientation and position of the camera 
would be particularly valuable for investigating 
systematic errors and would be much more 
reliable if this was not documented manually. 
Based on this, a risk analysis could make it 
possible that not every pillar or even not every VIG 
needs to be examined to reach the quality goals.

Conclusion

We used a microscope to investigate indentation 
damage caused by pillars in VIGs and developed 
a method for automatic damage detection. To do 
this, we took images of pillars with and without 
visible fractures. These images were cropped to 
their relevant information by locating the pillar 
with an object detection model. By splitting the 
images into quadrants, we were able to reduce 
the overall input size of the classifier to one-
eighth. For the classification of the damage, we 
developed our own model and compared it with 
state-of-the-art ResNet models. The custom 
model achieved better results on the validation 

Max 
epochs

Min AUC 
for ROC

FN 95 %
mean max

FP 10 %
mean max

Min precision 
at 100 % recall

Min 
accuracy

Mean 
loss

ResNet152V2 63 0.9995 3.8 6 5.4 15 0.9682 0.9841 0.0286

ResNet101V2 48 0.9997 3.6 7 2.2 4 0.9818 0.9762 0.0232

ResNet50V2 41 0.9960 6.6 15 2.2 5 0.9143 0.9683 0.0313

Custom Model 35 1.0000 0.0 0 0.2 1 1.0000 1.0000 0.0003

set in every metric compared to the ResNet 
models. In addition, we tested the generalisation 
capability of the custom model and a ResNet 
model using the Grad-CAM method. Here, too, 
the custom model performed much better. 
We were also able to show that the Grad-CAM 
method can be used to localise damage by using 
a classification model.
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